A surveyor is measuring the distance across a small lake

Slides:



Advertisements
Similar presentations
Section 2 – Right Triangle Trigonometry
Advertisements

Jeopardy Trig ratios Finding a missing side Finding a missing angle Sec, csc, and cot Word Problems
Review Homework.
Applications Involving Right Triangles
Applications Using Trigonometry Angles of Elevation and Depression.
“Real-World” Trig Problems You can draw your triangle either way: Angle of Depression = Angle of Elevation.
Subject: Analytic Geometry Unit 2
4.2b: Angle of Elevation (Inclination) and Angle of Depression
Unit 2 Review Questions.
 Given that and find the value of the cos θ.  Memorize it!  Quiz 1 st week of 2 nd semester ◦ 8 minute time limit ◦ All or nothing ◦ 20 points 
Angles of Elevation / Depression
Review Homework.
7.6 Law of Sines. Use the Law of Sines to solve triangles and problems.
Our eye level looking ahead is called the horizontal. Angles of Elevation and Angles of Depression angle of elevation angle of depression Horizontal (eye.
Angles of Elevation and Depression Sec: 8.4 Sol: G.8.
How do I use Trigonometry to solve word problems?
Chapter 7.5 Notes: Apply the Tangent Ratio Goal: To use the tangent ratio to determine side lengths in triangles.
Trig Ratios and Cofunction Relationships. Trig Ratios SOH-CAH-TOA.
Mystery Trig Inverse Trig Laws Cos & Sin Trig Word Problems
Warm-up A farmer has a triangular field where two sides measure 450 yards and 320 yards.  The angle between these two sides measures 80º.  The farmer wishes.
Person A Looking down from the roof of a house at an angle of 23º a shiny object is seen. The roof of the house is 32 feet above the ground. How.
Objective: To use the sine, cosine, and tangent ratios to determine missing side lengths in a right triangle. Right Triangle Trigonometry Sections 9.1.
8.4 Angles of Elevation and Depression
8.7 APPLICATIONS OF RIGHT TRIANGLE TRIGONOMETRY Some critical terminology Horizontal  any line constructed so that it is parallel with the horizon or.
Involving right triangles
1. If sin  = 5/12, then find cos (90 –  ). (Hint draw a picture, label it, then simplify your fraction answer.) 2. If tan  = 3/7, then find tan (90.
8-4 Angles of Elevation and Depression
Warm-Up: For the right triangle ABC shown below, find the values of b and c. Hint: Hint: Think about the side you know, the side you want to find out,
Find the angle of elevation of the sun when a 6-meter flagpole casts a 17-meter shadow. After flying at an altitude of 575 meters, a helicopter starts.
Trig Test Review 2. 45°-45°-90° 30°-60°-90°
SineCosineTangentPythagoreanTheorem Mixed Word Problems(Regents)
Right Triangle Trigonometry
TRIGONOMETRIC FUNCTIONS IN RIGHT TRIANGLES DAY 1: 6 TRIG FUNCTIONS & FINDING SIDES 12.1.
BELLWORK Find all side lengths and angle measures. Round lengths to the nearest hundredth and angle measures to the nearest tenth. 35° L M K 12 50° 125.
Similar Triangles Application
Angles of Depression and Elevation Anthony Hui Copyright 2015.
8 th Grade Math Unit 7 Review. Unit 7 Review 1) a)Write the Pythagorean Theorem formula. b)Find the length of the missing side x.
PreCalculus 7-R Unit 7 Trigonometric Graphs Review Problems.
PreCalculus 10-R Unit 10 – Trigonometric Applications Review Problems.
PreCalculus 6-R Additional Topics in Trigonometry Unit 6 Review Problems.
Chapter 5 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Applications of Trigonometric Functions.
Solve for the missing side length.. A forest ranger spots a fire from the top of a look-out tower. The tower is 160 feet tall and the angle of depression.
Section 4.1 Right Triangle Trigonometry. Find values of trigonometric functions for acute angles of right triangles. Solve right triangles. Mastery Objectives.
Applications of Trig Functions. Angle of Elevation: the angle from the line of sight and upwards. Angle of Elevation Angle of Depression: the angle from.
Warm up Find the missing side.. Daily Check Review Homework.
8.5 Angles of Elevation and Depression
$1 Million $500,000 $250,000 $125,000 $64,000 $32,000 $16,000 $8,000 $4,000 $2,000 $1,000 $500 $300 $200 $100 Welcome.
1.A slide 5.2 meters long makes a 40 o angle with the ground. How high is the top of the slide above the ground? 2. 3.
For each problem: Draw a diagram representing the situation, write the equation used to solve the problem, then solve. 1. A 20-ft. wire supporting a flagpole.
Trig Review.
Example: Fasten your seatbelts A small plane takes off from an airport and rises uniformly at an angle of 6° with the horizontal ground. After it has traveled.
10.3 Solving Right Triangles
Find the missing angle measure
Inverse Trigonometric Functions
Do Now: 2. If tan (
Warm Up Find the missing side length Find the missing angle 55°
Warm Up Find the missing side length Find the missing angle.
Devon wants to build a rope bridge between his treehouse and Cheng’s treehouse. Suppose Devon’s treehouse is directly behind Cheng’s treehouse. At.
Unit 5 Triangles Bingo.
8.5: Angles of Elevation and Depression
Find the missing side. Round to the nearest tenth.
Right Triangle Trigonometry
Trig Ratios C 5 2 A M Don’t forget the Pythagorean Theorem
Warm Up Find the missing side length. Find the missing angle °
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Solving Right Triangle Application
Trig Ratios and Word Problems
Angles of Elevation and Depression
Twenty Questions Subject: Trig Ratios.
Presentation transcript:

A surveyor is measuring the distance across a small lake A surveyor is measuring the distance across a small lake. He has set up his transit on one side of the lake 100 feet from a piling that is directly across from a pier on the other side of the lake. From his transit, the angle between the piling and the pier is 35°. What is the distance between the piling and the pier to the nearest foot?

A building 300 feet tall casts a 60 foot long shadow A building 300 feet tall casts a 60 foot long shadow. If a person stands at the end of the shadow and looks up to the top of the building, what is the angle of the person's eyes to the top of the building (to the nearest hundredth of a degree)? (Assume the person's eyes are 4 feet above ground level.)

A radio transmission tower is 250 feet tall A radio transmission tower is 250 feet tall. How long should a guy wire be if it is to be attached 10 feet from the top and is to make an angle of 22° with the ground? Give your answer to the nearest tenth of a foot.

A straight trail with a uniform inclination of 15° leads from a lodge at an elevation of 800 feet to a mountain lake at an elevation of 7000 feet. What is the length of the trail (to the nearest foot)?

A building 160 feet tall casts a 100 foot long shadow A building 160 feet tall casts a 100 foot long shadow. If a person looks down from the top of the building, what is the measure of the angle between the end of the shadow and the vertical side of the building (to the nearest degree)? (Assume the person's eyes are level with the top of the building.)