Solving Quadratic Equations.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

Quadratic Equations,.
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Applications of Quadratic Equations. The top of a coffee table is 3 metres longer than it is wide and has an area of 10 square metres. What are the dimensions.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
Properties of Logarithms
Solving Quadratic Equations by Completing the Square.
Solving Quadratic Equations.
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
Solving Equations. A quadratic equation is an equation equivalent to one of the form Where a, b, and c are real numbers and a  0 To solve a quadratic.
The Complex Plane; DeMoivre's Theorem. Real Axis Imaginary Axis Remember a complex number has a real part and an imaginary part. These are used to plot.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
This presentation was found at We made some minor formatting changes on slides because of overlapping material, and added this slide.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
Warm Up! Complete the square Quadratic Functions and Models.
1. A quadratic equation is an equation equivalent to one of the form Where a, b, and c are real numbers and a  0 To solve a quadratic equation we get.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Solving Equations. What are we going to do if we have non-zero values for a, b and c but can't factor the left hand side? This will not factor so we will.
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
Solving Trigonometric Equations Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 x y π π 6 -7 π 6 π 6.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
TRIGONOMETRIC IDENTITIES
Polynomial Functions.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
Matrix Algebra.
Relations And Functions.
Absolute Value.
Graphing Techniques: Transformations Transformations Transformations
Polynomial Functions.
Relations And Functions.
Polynomial Functions.
Relations And Functions.
Solving Quadratic Equations.
Bell work Describe what the following graphs may look like 2x^7 +3x^2
Relations and functions
Relations And Functions.
Relations And Functions.
The Complex Plane; DeMoivre's Theorem
Graphing Techniques: Transformations Transformations: Review
Rana karan dev sing.
Presentation transcript:

Solving Quadratic Equations

A quadratic equation is an equation equivalent to one of the form Where a, b, and c are real numbers and a  0 So if we have an equation in x and the highest power is 2, it is quadratic. To solve a quadratic equation we get it in the form above and see if it will factor. Get form above by subtracting 5x and adding 6 to both sides to get 0 on right side. -5x + 6 -5x + 6 Factor. Use the Null Factor law and set each factor = 0 and solve.

 Remember standard form for a quadratic equation is: In this form we could have the case where b = 0. When this is the case, we get the x2 alone and then square root both sides. Get x2 alone by adding 6 to both sides and then dividing both sides by 2 + 6 + 6 Now take the square root of both sides remembering that you must consider both the positive and negative root. Now take the square root of both sides remembering that you must consider both the positive and negative root.  2 2 Let's check:

We could factor by pulling an x out of each term. What if in standard form, c = 0? Factor out the common x Use the Null Factor law and set each factor = 0 and solve. If you put either of these values in for x in the original equation you can see it makes a true statement.

What are we going to do if we have non-zero values for a, b and c but can't factor the left hand side? This will not factor so we will complete the square and apply the square root method. First get the constant term on the other side by subtracting 3 from both sides. 9 9 Let's add 9. Right now we'll see that it works and then we'll look at how to find it. We are now going to add a number to the left side so it will factor into a perfect square. This means that it will factor into two identical factors. If we add a number to one side of the equation, we need to add it to the other to keep the equation true.

 Now we'll get rid of the square by square rooting both sides. Now factor the left hand side. This can be written as: Now we'll get rid of the square by square rooting both sides. two identical factors Remember you need both the positive and negative root!  Subtract 3 from both sides to get x alone. These are the answers in exact form. We can put them in a calculator to get two approximate answers.

9 9 the middle term's coefficient divided by 2 and squared Okay---so this works to solve the equation but how did we know to add 9 to both sides? 9 9 We wanted the left hand side to factor into two identical factors. +3x When you FOIL, the outer terms and the inner terms need to be identical and need to add up to 6x. +3 x 6 x the middle term's coefficient divided by 2 and squared The last term in the original trinomial will then be the middle term's coefficient divided by 2 and squared since last term times last term will be (3)(3) or 32. So to complete the square, the number to add to both sides is…

Let's solve another one by completing the square. To complete the square we want the coefficient of the x2 term to be 1. 2 2 2 2 Divide everything by 2 16 16 Since it doesn't factor get the constant on the other side ready to complete the square. So what do we add to both sides? the middle term's coefficient divided by 2 and squared Factor the left hand side Square root both sides (remember ) Add 4 to both sides to get x alone

By completing the square on a general quadratic equation in standard form we come up with what is called the quadratic formula. (Remember the song!! ) This formula can be used to solve any quadratic equation whether it factors or not. If it factors, it is generally easier to factor---but this formula would give you the solutions as well. We solved this by completing the square but let's solve it using the quadratic formula 1 6 6 (1) (3) (1) Don't make a mistake with order of operations! Let's do the power and the multiplying first.

There's a 2 in common in the terms of the numerator These are the solutions we got when we completed the square on this problem. NOTE: When using this formula if you've simplified under the radical and end up with a negative, there are no real solutions. (There are complex (imaginary) solutions, but that will be dealt with in year 12 Calculus).

SUMMARY OF SOLVING QUADRATIC EQUATIONS Get the equation in standard form: If there is no middle term (b = 0) then get the x2 alone and square root both sides (if you get a negative under the square root there are no real solutions). If there is no constant term (c = 0) then factor out the common x and use the null factor law to solve (set each factor = 0). If a, b and c are non-zero, see if you can factor and use the null factor law to solve. If it doesn't factor or is hard to factor, use the quadratic formula to solve (if you get a negative under the square root there are no real solutions).

The "stuff" under the square root is called the discriminant. This "discriminates" or tells us what type of solutions we'll have. If we have a quadratic equation and are considering solutions from the real number system, using the quadratic formula, one of three things can happen. 1. The "stuff" under the square root can be positive and we'd get two unequal real solutions 2. The "stuff" under the square root can be zero and we'd get one solution (called a repeated or double root because it would factor into two equal factors, each giving us the same solution). 3. The "stuff" under the square root can be negative and we'd get no real solutions. The "stuff" under the square root is called the discriminant. The Discriminant

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au