Monday, Oct. 15, 2012PHYS 3313-001, Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger.

Slides:



Advertisements
Similar presentations
1 PHYS 3313 – Section 001 Lecture #7 Wednesday, Feb. 5, 2014 Dr. Jaehoon Yu Relativistic Momentum and Energy Relationship between relativistic quantities.
Advertisements

Wednesday, June 4, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #3 Wednesday, June 4, 2014 Dr. Jaehoon Yu Chapter 2:
Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #21
PHYS 1443 – Section 001 Lecture #16 Monday, April 11, 2011 Dr. Jaehoon Yu Collisions – Elastic and Inelastic Collisions Collisions in two dimension Center.
CHAPTER 6 Quantum Mechanics II
Monday, Nov. 5, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 1, 2012 Dr. Jaehoon Yu Alpha Particle Decay.
Physics 451 Quantum mechanics I Fall 2012 Sep 10, 2012 Karine Chesnel.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
Lecture 2. Postulates in Quantum Mechanics Engel, Ch. 2-3 Ratner & Schatz, Ch. 2 Molecular Quantum Mechanics, Atkins & Friedman (4 th ed. 2005), Ch. 1.
Monday, Feb. 16, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #8 Monday, Feb. 16, 2015 Dr. Jaehoon Yu Relativistic Energy.
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
1 PHYS 3313 – Section 001 Lecture #22 Monday, Apr. 14, 2014 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen.
Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Nov. 6, 2013 Dr. Jaehoon Yu Barriers and.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #23 Monday, Dec. 1, 2003 Dr. Jaehoon Yu 1.Simple Harmonic.
(1) Experimental evidence shows the particles of microscopic systems moves according to the laws of wave motion, and not according to the Newton laws of.
Wednesday, June 10, 2015 PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #2 Tuesday, June 9, 2015 Dr. Jaehoon Yu Chapter 2:
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.
Tuesday, Sept. 9, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #5 Tuesday, Sept. 9, 2014 Dr. Jaehoon Yu Motion in two.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
Chapter 2 The Schrodinger Equation.  wave function of a free particle.  Time dependent Schrodinger equation.  The probability density.  Expectation.

Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Monday, Nov. 12, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Monday, Nov. 12, 2012 Dr. Jaehoon Yu Quantum Numbers.
1 PHYS 3313 – Section 001 Lecture #16 Monday, Mar. 24, 2014 Dr. Jaehoon Yu De Broglie Waves Bohr’s Quantization Conditions Electron Scattering Wave Packets.
Wed., Sept. 12, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 12, 2012 Dr. Jaehoon Yu Spacetime Diagram&
1 PHYS 3313 – Section 001 Lecture #23 Tuesday, Apr. 16, 2014 Dr. Jaehoon Yu Schrodinger Equation for Hydrogen Atom Quantum Numbers Solutions to the Angular.
Monday, April 6, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, April 6, 2015 Dr. Jaehoon Yu Normalization.
Wednesday, Sept. 15, 2010 PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #4 Wednesday, Sept. 15, 2010 Dr. Jaehoon Yu One Dimensional.
Monday, March 30, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, March 30, 2015 Dr. Jaehoon Yu Wave Motion.
PHYS 3313 – Section 001 Lecture #11
PHYS 3313 – Section 001 Lecture #18
Wednesday, Dec. 3, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #24 Wednesday, Dec. 3, 2003 Dr. Jaehoon Yu 1.Sinusoidal.
Wednesday, Oct. 31, 2012PHYS , Fall 2012 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Oct. 31, 2012 Dr. Amir Farbin Reflection.
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
Monday, Apr. 4, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #16 Monday, Apr. 4, 2005 Dr. Jae Yu Symmetries Why do we care about the symmetry?
Wednesday, Oct. 20, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Linear Momentum 2.Linear Momentum and Forces 3.Conservation of Momentum 4.Impulse and.
Wednesday, Oct. 31, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #16 Wednesday, Oct. 31, 2007 Dr. Jae Yu Two Dimensional.
Wednesday, June 8, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #3 Wednesday, June 8, 2011 Dr. Jaehoon Yu One Dimensional.
1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 11, 2013 Dr. Jaehoon Yu Time Dilation & Length Contraction Relativistic Velocity Addition Twin Paradox.
CHAPTER 6 Quantum Mechanics II
Wednesday, Aug. 27, 2003 PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #2 Wednesday, Aug. 27, 2003 Dr. Jaehoon Yu 1.Dimensional.
Wednesday, Nov. 7, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Wednesday, Nov. 7, 2012 Dr. Jaehoon Yu Solutions for.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Wednesday, Mar. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #13 Wednesday, Mar. 8, 2006 Dr. Jaehoon Yu Analysis.
Wednesday, April 1, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability.
Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.
Wednesday, Feb. 11, 2009 PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #5 Wednesday, Feb. 11, 2009 Dr. Jaehoon Yu Coordinate.
Wednesday, Apr. 6, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #17 Wednesday, Apr. 6, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge.
Principles of Quantum Mechanics P1) Energy is quantized The photoelectric effect Energy quanta E = h  where h = J-s.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and.
Review for Exam 2 The Schrodinger Eqn.
Wednesday, Nov. 15, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #19 Wednesday, Nov. 15, 2006 Dr. Jae Yu 1.Symmetries Local gauge symmetry Gauge.
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #16
Quantum Mechanics.
PHYS 3313 – Section 001 Lecture #22
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #18
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #22
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #19
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger Wave Equation Time-Independent Schrödinger Wave Equation Probability Density Wave Function Normalization Expectation Values Operators – Position, Momentum and Energy

Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 2 Announcements Reminder Homework #4 –End of chapter problems on CH5: 8, 10, 16, 24, 26, 36 and 47 –Due: This Wednesday, Oct. 17 Reading assignments –CH6.1 – the special topic Colloquium this week –4pm, Wednesday, Oct. 17, SH101 –Drs. Musielak and Fry of UTA

Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu

Special project #5 Prove that the wave function  =A[sin(kx-  t)+icos(kx-  t)] is a good solution for the time- dependent Schrödinger wave equation. Do NOT use the exponential expression of the wave function. (10 points) Determine whether or not the wave function  =Ae -  |x| satisfy the time-dependent Schrödinger wave equation. (10 points) Due for this special project is Monday, Oct. 22. You MUST have your own answers! Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu

The Schrödinger Wave Equation The Schrödinger wave equation in its time-dependent form for a particle of energy E moving in a potential V in one dimension is The extension into three dimensions is where is an imaginary number Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu

The wave equation must be linear so that we can use the superposition principle to. Prove that the wave function in Schrodinger equation is linear by showing that it is satisfied for the wave equation      where a and b are constants and   and  describe two waves each satisfying the Schrodinger Eq. Ex 6.1: Wave equation and Superposition Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu Rearrange terms

General Solution of the Schrödinger Wave Equation The general form of the solution of the Schrödinger wave equation is given by: which also describes a wave propergating in the x direction. In general the amplitude may also be complex. This is called the wave function of the particle. The wave function is also not restricted to being real. Only the physically measurable quantities (or observables ) must be real. These include the probability, momentum and energy. Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu

Show that Ae i(kx-  t) satisfies the time-dependent Schrodinger wave Eq. Ex 6.2: Solution for wave equation Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu So Ae i(kx-  t) is a good solution and satisfies Schrodinger Eq.

Determine  Asin(kx-  t) is an acceptable solution for the time- dependent Schrodinger wave Eq. Ex 6.3: Bad solution for wave equation Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu This is not true in all x and t. So  (x,t)=Asin(kx-  t) is not an acceptable solution for Schrodinger Eq.

Normalization and Probability The probability P ( x ) dx of a particle being between x and X + dx was given in the equation Here  * denotes the complex conjugate of  The probability of the particle being between x1 x1 and x2x2 is given by The wave function must also be normalized so that the probability of the particle being somewhere on the x axis is 1. Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu

Consider a wave packet formed by using the wave function that Ae -   where A is a constant to be determined by normalization. Normalize this wave function and find the probabilities of the particle being between 0 and 1/ , and between 1/  and 2/ . Ex 6.4: Normalization Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu Probabilit y density Normalized Wave Function

Using the wave function, we can compute the probability for a particle to be with 0 to 1/  and 1/  to 2/ . Ex 6.4: Normalization, cont’d Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu For 0 to 1/  : For 1/  to 2/  : How about 2/  : to ∞?