Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.

Slides:



Advertisements
Similar presentations
MPPC readout electoronics
Advertisements

New test result of MPPC M.Taguchi(kyoto).
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
Study of Photon Sensors using the Laser System 05/7/12 Niigata University, Japan Sayaka Iba, Editha P. Jacosalem, Hiroaki Ono, Noriko.
1 A proposal of new simple system for testing a large number of MPPC for the R&D phase of GLD calorimeter 2007/Feb/6 ACFA ILC Workshop ICEPP, University.
6mm 【 Development of Readout Electronics for MPPC 】 We report the read out electronics of MPPC( Multi-Pixel Photon Counter ). MPPC is a new photodetector.
MPPC R&D status Kobe Univ. CALICE collaboration meeting Yuji SUDO Univ. of Tsukuba ~ contents ~ Introduction Linearity curve Recovery time.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
GLD Calorimeter Status Oct 学術創成会議 S. Uozumi Shinshu University FJPPL meeting held at the end of September. Preparation underway toward the ECAL.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
CALICE Meeting DESY ITEP&MEPhI status report on tile production and R&D activities Michael Danilov ITEP.
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
SiPM: Development and Applications
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
The Scintillator ECAL Beam Test at FNAL Adil Khan International Linear Collider Workshop 2010 LCWS10 & ILC10, Beijing, China CALICE Scintillator ECAL group.
MPPC update including plastic connector T2K experiment collaboration meeting 2007/4/18 (Wed) S.Gomi T.Nakaya M.Yokoyama ( Kyoto University ) T.Nakadaira.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Study of the MPPC performance - R&D status for the GLD calorimeter readout – Nov 6-10.
Study of the Multi-Pixel Photon Counter for ILC calorimeter Satoru Uozumi (Kobe University) Atami Introduction of ILC and MPPC The MPPC performance.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group May 29 – Jun 4 DESY Introduction.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
1 MPPC update S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira (KEK) Nov KEK.
Development and Study of the Multi Pixel Photon Counter
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) Feb Beijing Introduction Basic performances Future.
R&D status of the Scintillator- strip based ECAL for the ILD Oct LCWS14 Belgrade Satoru Uozumi (KNU) For the CALICE collaboration Scintillator strips.
MPPC status M.Taguchi(kyoto) T2K ND /7/7.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Performance of SiPM Ryuhei Nakamura (Kobe Univ.) GLC calorimeter group (KEK, Kobe, Konan, Niigata, Shinshu, Tsukuba) Contents ・ Introduction ・ Test results.
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
Development of Multi-Pixel Photon Counters and readout electronics Makoto Taguchi High Energy Group.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
1 SiPM studies: Highlighting current equipment and immediate plans Lee BLM Quasar working group.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
R&D of Calorimeter using Strip/Block Scintillators with SiPM
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Scintillator tile – SiPM development at ITEP Michael Danilov, ITEP CALICE Meeting, Casablanca, 23 Sep 2010.
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Systematics on ScECAL 1 st prototype DESY Apr , CALICE Satoru Uozumi for the CALICE collaboration NIM A, 763 (2014) 278.
Fumihiko Ukegawa University of Tsukuba, Japan 6th Joint Korea-Japan ScEcal Meeting September 3, 2010 Kobe University Photo-sensor studies.
Performance of new MPPC Nov. 21 Korea-Japan joint meeting Takashi Maeda Hideki Yamazaki Yuji Sudo (University of Tsukuba) --- Contents ---
R&D of Calorimeter using Strip/Block Scintillator with SiPM E.P. Jacosalem, S. Iba, N. Nakajima, H. Ono, A.L. Sanchez & H. Miyata Niigata University ILC.
Performance of Scintillator-Strip Electromagnetic Calorimeter for the ILC experiment Satoru Uozumi (Kobe University) for the CALICE collaboration Mar 12.
Jet Energy Measurement at ILC Separation of jet particles in the calorimeter is required for the PFA  Fine granular calorimeter is necessary. Particle.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
ILC-CAL Test status of HPK photon sensors Kobe-U Y.Tamura / K.Kawagoe Confidential: do not distribute outside.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Study of Geiger Avalanche Photo Diode applications to pixel tracking detectors Barcelona Main Goal The use of std CMOS tech. APD's in Geiger mode (that.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Future Beam Test Plans of the Calorimeter Group Aug 学術創成会議 Satoru Uozumi (Shinshu) for the GLD calorimeter group We are planning to have two beam.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Development of Multi-Pixel Photon Counters (1)
Progress report on SiPM development and its applications
FINAL YEAR PROJECT 4SSCZ
ScECAL+AHCAL+TCMT Combined Beam FNAL
ITEP&MEPhI status report on tile production and R&D activities
R&D of MPPC for T2K experiment
R&D of MPPC in kyoto M.taguchi.
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans Sep France-Japan Joint Meeting Satoru Uozum T. Maeda, H. Yamazaki, Y. Sudo for the GLD Calorimeter group 1

~ 1 mm 20~100  m Depletion region ~ 2  m ~ 8  m Substrate 1600 pixels 400 pixels substrate p + p-p- Guard ring n - Al conductor p+p+ n+n+ Si Resistor Bias voltage (~70V) The Multi-Pixel Photon Counter (MPPC) … novel type photon sensor being developed by Hamamatsu 2

Required performance for the GLD Calorimeter Gain: ~ Best to have 10 6, at least 10 5 Dynamic range: can measure ~1000 p.e. – satisfactory to measure EM shower maximum – need > 2500 pixels Photon Detection Efficiency ~ 30 % – to distinguish MIP signal Noise rate : < 1 MHz (threshold = 0.5 p.e., threshold =1.5 p.e is also acceptable) good uniformity, small cross-talk Timing Resolution ~ 1 nsec – Necessary for bunch ID, slow neutron separation Sensor area: 1.5 x 1.5 mm – to put more number of pixels Should be stable against bias voltage / temperature / time 3

To achieve our goal, we are studying basic properties of the MPPC collaborating with Hamamatsu. Now we are measuring performance of the latest 1600 pixel MPPC sample. Based on its results, we provide feedback to Hamamatsu to have improved samples. Our R&D Status Evaluate performance of the MPPC prototypes Provide feedback to HPK Improved samples from HPK 4

Basic Properties of the 1600 pixel MPPC Check fundamental performance against bias voltage –Gain, Noise Rate, Cross-talk probability –Photon Detection Efficiency, Response curve (measurements still ongoing) Temperature dependence is also measured –MPPC performance is known to be sensitive to temperature Thermostatic Chamber Green LED MPPC 5

Gain measurement ・ 30 ℃ ・ 25 ℃ ・ 20 ℃ ・ 15 ℃ ・ 10 ℃ ・ 0 ℃ ・ - 20 ℃ d S : ADC sensitivity = 0.25 pC/ADCcount A : Amp gain = 63 e : electron charge = 1.6 x C C : Pixel capacity V 0 : Breakdown voltage 6

C, V 0 against Temperature V 0 = aT +b a = (5.67 ± 0.03) x10 -2 b = 66.2 ± 0.1 C looks not sensitive to temperature in under < 20 o C V 0 is linear to temperature 7

Noise Rate … rate of fake avalanche signal induced by thermal electrons Over voltage [V] = V bias – V 0 (T) ・ 30 ℃ ・ 25 ℃ ・ 20 ℃ ・ 15 ℃ ・ 10 ℃ ・ 0 ℃ ・ - 20 ℃ Lower temperature  Lower noise rate 8

Cross-talk Cross-talk probability looks stable with temperature in over voltage < 2.5V. ・ 30 ℃ ・ 25 ℃ ・ 20 ℃ ・ 15 ℃ ・ 10 ℃ ・ 0 ℃ ・ - 20 ℃ Over voltage [V] = V bias – V 0 (T) 9 Cross-talk to adjacent pixels is caused by photons created in an avalanche. Cross-talk probability is measured from dark noise rates :

Measurement with Microscopic Laser 1600 pixel MPPC YAG Laser, = 532 nm (green) Pulse width ~ 2 nsec, rate ~ 8 kHz Spot size ~ 1  m Light yield = 0~1 p.e. (reduced by filters) Can perform precise pinpoint scan with the well-focused laser ~25  m Laser spot ( before inserting filters ) 10

Using the laser, we perform scan within a pixel pixel-by-pixel scan to see the variation of Gain Photon Detection Efficiency Cross-talk 11

Efficiency v.s. Bias Voltage Inject laser to center of a pixel. The efficiency depends on bias voltage, but is stabilized in V bias > 70 V. Pedestal 1 pix. fired 2 pix. fired (cross-talk) 12

Efficiency Variation within a Pixel Fraction of sensitive region ~ 20% Variation within a sensitive region ~9.2% 1 pixel The shape of sensitive region is not changed with bias voltage Bias voltage ・ -71.0V ・ -70.0V ・ -69.5V ・ -69.0V 13

Gain Variation within a Pixel Gain (x10 5 ) Center part have higher gain Gain variation in a sensitive region ~ 2.7% y-point (1  m pitch) x-point (1  m pitch) Edge of a sensor V bias = 70.0 V 14

Cross-talk within a Pixel Shape of the cross-talk probability depends on bias voltage Edge part show larger cross-talk Bias voltage ・ -71.0V ・ -70.0V ・ -69.5V ・ -6 9.0V Sensitive region in a pixel Pedestal 1 pix. fired 2 pix. fired (cross-talk) 15

Pixel-by-pixel Scan Scan pixels in quadrant of a sensor (The quadrant is divided into 4 sub-regions for some technical reasons) Inject laser at the center of each pixel 20 x 20 pixels Sensor 16

Pixel-by-pixel Scan - Efficiency edge of a sensor 17 Total variation ~4.0 %

Pixel-by-pixel Scan - Gain 3.2(x10 5 ) 3.8 (x10 5 ) edge of a sensor Edge pixels have higher gain Strange oblique structure is seen, reason unknown Total variation ~3.2 % 18

Summary We are evaluating the MPPC performance from the viewpoint of the GLD calorimeter readout use The MPPC properties are sensitive to over voltage (=V bias -V 0 (T)), thus affected by temperature change  Need of accurate voltage / temperature control As a result of the microscopic laser scan, the MPPC properties are observed to be uniform within a sensor. Measure P.D.E. and Response curve (Input light yield v.s. output pulse height), I-V curve Figure out device-by-device variation –20 samples will be delivered in next week Plans 19