Gravitational Wave and High Energy Phenomena Kunihito Ioka (KEK) 1. Gamma-Ray Burst 2. Cosmic-Ray Y. Suwa (Kyoto), K. Kashiyama (Kyoto), N. Kawanaka (KEK),

Slides:



Advertisements
Similar presentations
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Advertisements

1 Explaining extended emission Gamma-Ray Bursts using accretion onto a magnetar Paul O’Brien & Ben Gompertz University of Leicester (with thanks to Graham.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
Collaborators: Wong A. Y. L. (HKU), Huang, Y. F. (NJU), Cheng, K. S. (HKU), Lu T. (PMO), Xu M. (NJU), Wang X. (NJU), Deng W. (NJU). Gamma-ray Sky from.
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
Gamma-Ray Burst (GRB) Science with LST Kunihito Ioka (KEK) on behalf of the GRB subtask CTA LST meeting
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID.
Neutron Stars and Black Holes
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
Off axis counterparts of SGRBs tagged by gravitational waves Kazumi Kashiyama (Penn State) with K.Ioka, T.Nakamura and P. Meszaros.
‘Dark Side’ The ‘Dark Side’ of Gamma-Ray Bursts and Implications for Nucleosynthesis neutron capture elements (‘n-process’) light elements (spallation?)
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Edo Berger (Harvard CfA) Eliot Quataert, Siva Darbha, Dan Kasen, & Daniel Perley (UC Berkeley) Almudena Arcones (U Basel) & Gabriel Martinez-Pinedo (GSI,
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
April 1st, 2009SASS1 Gamma-Ray Bursts Aurélien Bouvier.
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Gamma-Ray Bursts: The Biggest Explosions Since the Big Bang Edo Berger.
The TeV view of the Galactic Centre R. Terrier APC.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
Gamma-Ray Bursts from Radiation-Dominated Jet? Kunihito Ioka (KEK) T. Inoue, Asano & KI, arXiv: KI, arXiv: Suwa & KI, arXiv:
井岡 邦仁 (KEK) 共同研究者: 川中宣太 (KEK). Adriani+ 08 Positron excess above the predicted secondary Expected Secondary Positron Excess ⇒ Primary sources - Dark matter?
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Gamma-Ray Bursts Mano-a-Mano. Short bursts T
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
Unstable e ± Photospheres & GRB Spectral Relations Kunihito Ioka (IPNS, KEK) w/ K.Murase, K.Toma, S.Nagataki, T.Nakamura, M.Ohno, Suzaku team, P.Mészáros.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
BH Astrophys. Ch3.6. Outline 1. Some basic knowledge about GRBs 2. Long Gamma Ray Bursts (LGRBs) - Why so luminous? - What’s the geometry? - The life.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
The peak energy and spectrum from dissipative GRB photospheres Dimitrios Giannios Physics Department, Purdue Liverpool, June 19, 2012.
Injections of e ± from Nearby Pulsars and their GeV/TeV Spectral Features Injections of e ± from Nearby Pulsars and their GeV/TeV Spectral Features (NK,
The Millisecond Pulsar Contribution to the Rising Positron Fraction Christo Venter 34 th ICRC, The Hague, The Netherlands, 30 July – 6 August 2015 Collaborators:
Kunihito IOKA (Osaka Univ.) 1.Observation 2.Fireball 3.Internal shock 4.Afterglow 5.Jet 6.Central engine 7.Links with other fields 8.Luminosity-lag 9.X-ray.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Hot Relics in GRB Photosphere and GeV Photon Delay Kunihito Ioka (KEK)
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
1st page of proposal with 2 pictures and institution list 1.
Hyperaccreting Disks around Neutrons Stars and Magnetars for GRBs: Neutrino Annihilation and Strong Magnetic Fields Dong Zhang (Ohio State) Zi-Gao Dai.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
The prompt phase of GRBs Dimitrios Giannios Lyman Spitzer, Jr. Fellow Princeton, Department of Astrophysical Sciences Raleigh, 3/7/2011.
Cosmic-Ray Electron Excess from Pulsars is Spiky or Smooth?: Continuous and Multiple Electron/Positron Injections Cosmic-Ray Electron Excess from Pulsars.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
What GRBs can bring to Particle Astrophysics
Model of TeV Gamma-Ray Emission from Geminga Pulsar Wind Nebula and Implication for Cosmic-Ray Electrons/Positrons Norita Kawanaka (Hakubi Center, Kyoto.
TeV 宇宙線電子スペクトルの解釈 - HESS の結果について少し -
Can dark matter annihilation account for the cosmic e+- excesses?
An FRB in a bottle? : multi-wavelength approach
Short-Duration Gamma-Ray Burst Central Engines
Neutrinos from Gamma-Ray Bursts
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
Kunihito Ioka & Mihoko M. Nojiri (KEK, Japan)
Presentation transcript:

Gravitational Wave and High Energy Phenomena Kunihito Ioka (KEK) 1. Gamma-Ray Burst 2. Cosmic-Ray Y. Suwa (Kyoto), K. Kashiyama (Kyoto), N. Kawanaka (KEK), Y. Ohira (KEK) Congratulations to Nakamura-san, Maeda-san and JGRG

Fermi Revolution GeV  from GRBs GRB Abdo+ 09 GeV MeV keV

High Lorentz Factor?   →e + e - (  th ~MeV) – R~c  t ⇒  ~  T N  /4  R 2 ≫ 1 (  -ray cannot escape) Relativistic – R~  2 c  t – Blueshift –  ~  2  -2 ~  -6  >10 3 ! v> ×c  min Redshift But see also Zou, Fan & Piran 10, Li 08, Aoi+KI 10

Conventional  max Fireball expands by radiation pressure In principle,  max ~ Energy / Mass But, Mass↓ ⇒ Transparent before  ~  max Paczynski 86 Goodman 86 Shemi & Piran 90 Meszaros & Rees Matte r Radiation

Nonradiative Pressure Radiation Pressure ~ Collisionless Pressure of Relativistic Particles ~ Magnetic Field Not escape ⇒  =Energy/Mass can be attained e, p KI 10 

Radiation to Collisionless  Initially Collisional Collisionless but Opaque  → Relativistic proton Energy Momentum : Radiation ~ Relativistic motion Rela. motion Radiation 2 eqs. for 2 unknowns ∝ r -4 Fireball

 max of Dissipated Fireball  max ~10 6 ! KI 10Baryon-LessBaryon-Rich >  conv ~10 3 Collsionless bulk- acceleration (To be opaque)

Photosphere-Internal-External Shock Model Photo- sphere Internal Shock External Shock keVMeVGeV e.g., Toma, Wu & Meszaros Kumar & Barniol Duran 09 Ghisellini+09, Wang+09,KI 10 Zou+ 09, Piran & Nakar 10 Variable Long-lived E  ~E/2

L∝T2L∝T2 L∝T4L∝T4 Yonetoku+KI 03 Amati 02 E peak -Luminosity Relation Stefan- Boltzmann Dissipation ⇒ r 0 ↑ ⇒ T↓

High  Internal Shock KI 10 GeV  : Simple synchro. emission TeV GeV

CTA ~20GeV-100TeV x10 Sensitivity  ~1-2 min FOV~5-10 deg ~20 s slew (LST) ~2015 (?) ~150€ TeV  from GRB or not?

NS merger – Short GRB NS-NS mergers are promising GW sources ⇒ LCGT, LIGO, Virgo, GEO, … EM followup - Short GRB? - z ⇒ local H 0 - Degeneracies - S/N Schutz 86 Kochanek & Piran 93 In most cases, GRB jets are off-axis ? ??

Off-Axis GRB I am involved in GRB … Medal of Academy

Black Hole MACHO My first paper

KI & Nakamura 01 Fluence Energy Gamma-ray X-ray Off-Axis GRBs are Dim L  T~(  v ) -6  T~R  j /c Even if  T~0.1s, L<10 39 erg/s

Off-Axis Afterglow Granot+ 02 Totani & Panaitescu 02 Also very dim Radio might be detectable

Merged Neutron Star Merged NS has T~10MeV L=4  r 2 caT 4 ~10 53 erg/s ≫ L Edd Outflow ~ M  /s (?) – -driven wind – Tidal tail/heating – Disk wind Opaque – L is suppressed by  Followed by adiabatic cooling T~r -1 ⇒ L/  ~r 0 Eichler+ 89 Rosswog 05 Dessart+ 09 ⇔ n-rich element

Extended Emission Short GRB Extended Emission ~ 2 x E spike Barthelmy+ 05 GRB ~1/2 SGRBs Sharp Drop ⇒ Afterglow Engine origin Wind Fallback t acc ~100 s (r/10 9 cm) (  /0.1) -1 (r/10H) Lee & Ramirez-Ruiz 07, Rosswog 07

Macronova Radioactive heating (  -decay, fission, 56 Ni→ 56 Co→ 56 Fe) f: fraction of rest mass released as heat M=10 -2 M  v=c/3 optically thin Like SN Duration ∝ (M/v) 1/2 T ∝ (f 2 /Mv) 1/8 ~ UV-Opt f~3x10 -6 (Metzger+ 10) ⇒ Dim SN Li & Paczynski 98 Kulkarni 05 ~SN

Jet Penetration Even ~10 -6 M  causes baryon load problem Shocked mass ⇒ Cocoon like long GRB collapsar  ~1 ⇒ Visible from off-axis Morsony+ 07 Cocoon  ~c/v ≫ 1 still opaque Brighter than SN (max)

A. Mizuta’s calculation

Shock Breakout Cocoon breakout from wind ~ Supernova shock breakout v/c>0.2 ⇒ Thermal equilibrium T shock ~10-200keV > T down X-ray SN shock breakout is detected Swift/XRT ⇒ up to 200Mpc (Klein & Chevalier 78, Weaver 76, Katz+ 10) Soderberg+ 08

Off-Axis Short GRB ~0.1s ~100s ~10 51 erg/s ~10 48 erg/s Cocoon Breakout (X-ray) ~10 45 erg/s (max) Cocoon Breakout (UV-Opt) ~100s ~1day Afterglow (Radio) Fade away if  <1 SGRBs have no SN ~100 day Magnetar Activity (keV-MeV) Time ~ms ~min KI & Taniguchi 00 Hansen & Lyutikov 01 On-Axis [My understanding]

Most Ancient Object A massive star’s death just 600 Myr after the Big Bang GRB z~8.2

First GRB Pop III (Zero Metal) ~ M  (!?) Pop III (Zero Metal) ~ M  (!?) Present Day Massive Star ~20M  Abel+ 02 Bromm+ 02 Omukai+ 03 Yoshida+ 08 Gigantic (x100) z~10-30??? Komissarov & Barkov 10 Meszaros & Rees 10

Massive Envelope Ohkubo+ 09 Heger+ 03 Suwa & KI 10 No mass loss via line driven wind R/c~10 3 s > T GRB ~10s ⇒ No GRB? Core Envelope

Envelope Accretion Suwa & KI 10 Energetic Very long Modest L Bright phase ⇒ Cocoon ⇒ v Jet head

Analytic Expressions

GRB jet can breakout the first star! Yudai SUWA P-68

PAMELA Adriani+ 08, 10 Positron excess above the predicted secondary Expected Secondary Positron Excess ⇒ Primary sources − Dark matter? − Astrophysical? ⇒ (Too) Many papers >500 Jul 06 - Feb e-, 9430 e+ Solar modulation

Cosmic-Ray Electron An Excess also in (e + +e - ) Spectrum Abdo+ 09 Ackermann+ 10 Chang+ 08, Torii+ 08 Aharonian+ 08, 09 ATIC/PPB-BETS Peak + Cutoff ~600GeV DM? HESS ~TeV cutoff conventional diffusive model Fermi Smooth E -3 No peak

Antiproton as predicted Adriani+(PAMELA) 08, 10 BESS 95-97, 99 No excess for antiproton

Cosmic-Ray Inventory  (proton) ~1eV/cm 3 ~Suprenova Remnants  (electron) ~10 -2 eV/cm 3  (positron) ~10 -3 eV/cm 3 ~ 0.1% of p Origin unknown  -2.7

e ± cooling We are here Positron source d<~1kpc Our galaxy e ± lose energy (cool) via inverse Compton and synchroton

Dark Matter? Annihilation Decay DM e e e  Q ~ n 2 E cut ~ m DM ~3x cm 3 /s >3x cm 3 /s boost factor ~100 Q ~ n E cut ~ m DM /2  decay ~10 26 sec (>H -1 )  -ray constraints are getting tight

Astrophysical Models Shen 70; Aharonian+ 95; Atoyan et al. 95; Chi+ 96; Zhang & Cheng 01; Grimani 07; Yuksel+ 08; Buesching+ 08; Hooper+ 08; Profumo 08; Malyshev+ 09; Grasso+ 09 Kawanaka, KI & Nojiri 09; Shen & Berkey 68; Pohl & Esposito 98; Kobayashi+ 04; Shaviv+ 09; Hu+ 09; Fujita+KI 09; Blasi 09; Blasi & Serpico 09; Mertsch & Sarkar 09; Biermann+ 09 Propagation Delahaye+ 08; Cowsik & Burch 09 Heinz & Sunyaev 02 Microquasar KI 10 Calvez & Kusenko 10 GRB SNRPulsar x erg/SN ~10 50 erg/10 3 SN Cosmic-ray proton energy Proton Comtami. Fazely+ 09; Schubnell 09

Astrophysical Models Shen 70; Aharonian+ 95; Atoyan et al. 95; Chi+ 96; Zhang & Cheng 01; Grimani 07; Yuksel+ 08; Buesching+ 08; Hooper+ 08; Profumo 08; Malyshev+ 09; Grasso+ 09 Kawanaka, KI & Nojiri 09; Shen & Berkey 68; Pohl & Esposito 98; Kobayashi+ 04; Shaviv+ 09; Hu+ 09; Fujita+KI 09; Blasi 09; Blasi & Serpico 09; Mertsch & Sarkar 09; Biermann+ 09 Propagation Delahaye+ 08; Cowsik & Burch 09 Heinz & Sunyaev 02 Microquasar KI 10 Calvez & Kusenko 10 GRB SNRPulsar x erg/SN ~10 50 erg/10 3 SN Cosmic-ray proton energy Proton Comtami. Fazely+ 09; Schubnell 09 White Dwarf Pulsar via Binary Merger Kazumi KASHIYAMA P-91

LISA Background SNIa or Rapidly spinning WD

Energy Budget Neutron Star Pulsar White Dwarf Pulsar Rotational Energy Event Rate~1/100yr Energy Loss/High B Fraction~1% ~10 48 erg/SN

e ± Factory Goldreich & Julian 69 e±e± Unipolar Induction e ± cascade Ruderman & Sutherland 75 ~10TeV

Pulsar Death Line After merger, P ~ 50 sec High B pulsars can create e ± Kashiyama+ 10

Only WD Pulsar Model Electron Positron WD pulsars are long-lived (~10 9 yr ⇔ 10 5 yr) ⇒ Many nearby sources (~100 ⇔ 1)

NS+WD Mixed Model Electron Positron NSWD WD pulsars are long-lived (~10 9 yr ⇔ 10 5 yr) ⇒ Each WD is too dim to detect

New Window ? ? ? ? Positron CR AMS-02 (2011-) Electron CR CALET (2013-) CTA (2015-)

CALET (CALorimetric Electron Telescope) © Torii Cosmic Ray Electrons up to ~10TeV w/  E~a few % (>100GeV)

Cosmic Ray Escape Low E High E Supernova Remnant If confined, CR lose energy ⇒ F ∝ E -2 is changed ⇒ CR Origin All escape Only ~1 source (e.g., Vela) in TeV window Ptuskin & Zirakashvili 05 Kawanaka, KI+ 10

Hadronic v.s. Leptonic Fujita+KI 09 Anti-proton fraction SNR model: pp →  + → e + e - (w/ surrounding) ⇒ Inevitably anti-proton excess above ~100 GeV

Summary Gamma-Ray Burst – Fireball  max ~10 6 in principle ⇔ Fermi GRB – Off-axis NS merger: Cocoon breakout – GRB jet can breakout the first star (P-68) Cosmic-Ray – CR e ± from white dwarf pulsars (P-91) – New e ± ⇒ CR origin Gravitational Wave – Final messenger to come soon

Thanks and Congratulations to Nakamura-san Maeda-san and JGRG Thanks and Congratulations to Nakamura-san Maeda-san and JGRG