Lazy vs. Eager Learning Lazy vs. eager learning

Slides:



Advertisements
Similar presentations
1 Classification using instance-based learning. 3 March, 2000Advanced Knowledge Management2 Introduction (lazy vs. eager learning) Notion of similarity.
Advertisements

Machine Learning Instance Based Learning & Case Based Reasoning Exercise Solutions.
Data Mining Classification: Alternative Techniques
1 CS 391L: Machine Learning: Instance Based Learning Raymond J. Mooney University of Texas at Austin.
Preventing Overfitting Problem: We don’t want to these algorithms to fit to ``noise’’ The generated tree may overfit the training data –Too many branches,
Instance Based Learning
1 Machine Learning: Lecture 7 Instance-Based Learning (IBL) (Based on Chapter 8 of Mitchell T.., Machine Learning, 1997)
Chapter 6. Classification and Prediction
1er. Escuela Red ProTIC - Tandil, de Abril, Instance-Based Learning 4.1 Introduction Instance-Based Learning: Local approximation to the.
Classification and Decision Boundaries
Navneet Goyal. Instance Based Learning  Rote Classifier  K- nearest neighbors (K-NN)  Case Based Resoning (CBR)
Instance Based Learning
Università di Milano-Bicocca Laurea Magistrale in Informatica Corso di APPRENDIMENTO E APPROSSIMAZIONE Lezione 8 - Instance based learning Prof. Giancarlo.
More Classifier and Accuracy Measure of Classifiers
K nearest neighbor and Rocchio algorithm
Bayesian classifiers.
Instance based learning K-Nearest Neighbor Locally weighted regression Radial basis functions.
Instance Based Learning
Instance-Based Learning
Classification and Regression. Classification and regression  What is classification? What is regression?  Issues regarding classification and regression.
Lazy Learning k-Nearest Neighbour Motivation: availability of large amounts of processing power improves our ability to tune k-NN classifiers.
Classification and Regression. Classification and regression  What is classification? What is regression?  Issues regarding classification and regression.
Data Mining Classification: Alternative Techniques
These slides are based on Tom Mitchell’s book “Machine Learning” Lazy learning vs. eager learning Processing is delayed until a new instance must be classified.
1 Nearest Neighbor Learning Greg Grudic (Notes borrowed from Thomas G. Dietterich and Tom Mitchell) Intro AI.
CES 514 – Data Mining Lec 9 April 14 Mid-term k nearest neighbor.
Aprendizagem baseada em instâncias (K vizinhos mais próximos)
KNN, LVQ, SOM. Instance Based Learning K-Nearest Neighbor Algorithm (LVQ) Learning Vector Quantization (SOM) Self Organizing Maps.
Instance Based Learning Bob Durrant School of Computer Science University of Birmingham (Slides: Dr Ata Kabán) 1.
INSTANCE-BASE LEARNING
Nearest Neighbor Classifiers other names: –instance-based learning –case-based learning (CBL) –non-parametric learning –model-free learning.
CS Instance Based Learning1 Instance Based Learning.
K Nearest Neighborhood (KNNs)
DATA MINING LECTURE 10 Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines.
10/5/2015Data Mining: Concepts and Techniques1 Chapter 6. Classification and Prediction What is classification? What is prediction? Issues regarding classification.
Han: KDD --- Classification 1 Classification — Slides for Textbook — — Chapter 7 — ©Jiawei Han and Micheline Kamber Intelligent Database Systems Research.
Basic Data Mining Technique
Chapter 8 The k-Means Algorithm and Genetic Algorithm.
11/12/2012ISC471 / HCI571 Isabelle Bichindaritz 1 Prediction.
 2003, G.Tecuci, Learning Agents Laboratory 1 Learning Agents Laboratory Computer Science Department George Mason University Prof. Gheorghe Tecuci 9 Instance-Based.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Statistical Inference (By Michael Jordon) l Bayesian perspective –conditional perspective—inferences.
1 Instance Based Learning Ata Kaban The University of Birmingham.
CpSc 881: Machine Learning Instance Based Learning.
CpSc 810: Machine Learning Instance Based Learning.
Outline K-Nearest Neighbor algorithm Fuzzy Set theory Classifier Accuracy Measures.
Lazy Learners K-Nearest Neighbor algorithm Fuzzy Set theory Classifier Accuracy Measures.
Kansas State University Department of Computing and Information Sciences CIS 798: Intelligent Systems and Machine Learning Tuesday, November 23, 1999.
DATA MINING LECTURE 10b Classification k-nearest neighbor classifier
Meta-learning for Algorithm Recommendation Meta-learning for Algorithm Recommendation Background on Local Learning Background on Algorithm Assessment Algorithm.
CS Machine Learning Instance Based Learning (Adapted from various sources)
K-Nearest Neighbor Learning.
Eick: kNN kNN: A Non-parametric Classification and Prediction Technique Goals of this set of transparencies: 1.Introduce kNN---a popular non-parameric.
Kansas State University Department of Computing and Information Sciences CIS 890: Special Topics in Intelligent Systems Wednesday, November 15, 2000 Cecil.
Instance-Based Learning Evgueni Smirnov. Overview Instance-Based Learning Comparison of Eager and Instance-Based Learning Instance Distances for Instance-Based.
CS 8751 ML & KDDInstance Based Learning1 k-Nearest Neighbor Locally weighted regression Radial basis functions Case-based reasoning Lazy and eager learning.
1 Instance Based Learning Soongsil University Intelligent Systems Lab.
Classification Nearest Neighbor
Data Mining: Concepts and Techniques (3rd ed
Instance Based Learning (Adapted from various sources)
K Nearest Neighbor Classification
Classification Nearest Neighbor
Nearest-Neighbor Classifiers
یادگیری بر پایه نمونه Instance Based Learning Instructor : Saeed Shiry
Instance Based Learning
COSC 4335: Other Classification Techniques
Chap 8. Instance Based Learning
Machine Learning: UNIT-4 CHAPTER-1
Data Mining Classification: Alternative Techniques
Nearest Neighbor Classifiers
CSE4334/5334 Data Mining Lecture 7: Classification (4)
Presentation transcript:

Lazy vs. Eager Learning Lazy vs. eager learning Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple Eager learning (eg. Decision trees, SVM, NN): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify Lazy: less time in training but more time in predicting Accuracy Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods Instance-based learning: Store training examples and delay the processing (“lazy evaluation”) until a new instance must be classified Typical approaches k-nearest neighbor approach Instances represented as points in a Euclidean space. Locally weighted regression Constructs local approximation

The k-Nearest Neighbor Algorithm All instances correspond to points in the n-D space The nearest neighbor are defined in terms of Euclidean distance, dist(X1, X2) Target function could be discrete- or real- value . _ _ . _ _ + . . + . _ xq + . _ +

For discrete-valued, k-NN returns the most common value among the k training examples nearest to xq Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

Discussion on the k-NN Algorithm k-NN for real-valued prediction for a given unknown tuple Returns the mean values of the k nearest neighbors Distance-weighted nearest neighbor algorithm Weight the contribution of each of the k neighbors according to their distance to the query xq Give greater weight to closer neighbors Robust to noisy data by averaging k-nearest neighbors Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes To overcome it, axes stretch or elimination of the least relevant attributes

Case-Based Reasoning (CBR) CBR: Uses a database of problem solutions to solve new problems Store symbolic description (tuples or cases)—not points in a Euclidean space Applications: Customer-service (product-related diagnosis), legal ruling Methodology Instances represented by rich symbolic descriptions (e.g., function graphs) Search for similar cases, multiple retrieved cases may be combined Tight coupling between case retrieval, knowledge-based reasoning, and problem solving Challenges Find a good similarity metric Indexing based on syntactic similarity measure, and when failure, backtracking, and adapting to additional cases