Jacob Gavan Fellow IEEE October 2013. Introduction In the Beginning of the 17 th Century KEPLER discovered the existence of Natural Satellites and their.

Slides:



Advertisements
Similar presentations
Satellites Prepared By: Muhamad Hisham Hamidon
Advertisements

Nairobi, Kenya, 26 – 27July 2010 Role of ITU-T & ITU-R Ahmed ZEDDAM Ahmed ZEDDAM, ITU-T SG5 Chair France Telecom Orange ITU-T Workshop on Delivering Good.
Satellite Communication
EC-ECC WORKSHOP ON WRC-15 ESOA Brussels, 10 December
2  Definition  Features  Architecture  Prototypes  Communication  Security  Benefits and Concerns  Conclusion.
BR WORKSHOP ON THE EFFICIENT USE OF THE SPECTRUM/ORBIT RESOURCE ESOA Limassol, Cyprus, April
Alessandra Babuscia, Kar-Ming Cheung, Charles Lee, (Jet Propulsion Laboratory, California Institute of Technology) Mars CubeSat Workshop 20 th November2014.
EEE440 Modern Communication Systems Satellite Systems.
Modular Nanosatellites as Amateur Radio Communication Platforms Funded by the New Hampshire Space Grant Consortium Gus Moore; Todd Kerner, KB2BCT; Amish.
Surrey Space Centre, University of Surrey, Guildford, Surrey, GU2 7XH ESA Wireless Sensor Motes Study George Prassinos, SSC, University of Surrey.
EMC Technology Roadmapping: A Long-Term Strategy Marcel van Doorn Philips Applied Technologies EM&C Competence Center Eindhoven, The Netherlands, March.
Spacecraft Launch Vehicles
Lecture 11: Satellite Communcation Anders Västberg Slides are a selection from the slides from chapter 9 from:
GROUP MEMBERS Jalil Ahmed Sadia Imtiaz Zaigham Abbas Faisal Jamil swedishcr.weebly.com 3.
Transmission Media / Channels. Introduction Provides the connection between the transmitter and receiver. 1.Pair of wires – carry electric signal. 2.Optical.
SPACE EXPLORATION DEVELOPMENT IN ASTRONOMY DEVELOPMENT IN SPACE EXPLORATION THE APPLICATION OF THE TECHNOLOGY RELATED TO ASTRONOMY AND SPACE EXPLORATION.
CS 453 Computer Networks Lecture 6 Layer 1 – Physical Layer.
History of Spaceflight © 2011 Project Lead The Way, Inc.Flight and Space.
Satellite Television A very brief history of satellites Sputnik 1, the first artificial satellite launched by the Russians on October 4, It contained.
→ Potential ESA- Roscosmos Cooperation in Education Activities.
Unit 4: Astronomy Chapter 13: Exploring Space
AVIATION HISTORY Lecture 11 : Space Exploration. Space exploration is the use of astronomy and space technology to explore outer space.
Global Satellite Services GEO, MEO and LEO Satellites, IntelSat, and Global Positioning Systems.
CSCI 465 Data Communications and Networks Lecture 6 Martin van Bommel CSCI 465 Data Communications and Networks 1.
Nanosatellites as the Base of Monitoring System for the Ionosphere-Magnetosphere Currents. A.N.Zaitsev*, IZMIRAN, Troitsk, Moscow region, , RUSSIA.
Comprehend the history and accomplishments of the Chinese Space Program Comprehend the history and accomplishments of the Indian Space Program Comprehend.
Cubesats A spacecraft concept to provide advances in international cooperation From: Doug Rowland, NASA GSFC Alexi Glover, ESA.
Satellite Communications
Jarrent Tayag Angeles University Foundation – Integrated School.
Chapter 22- Exploring Space Lesson 1-Rocket Science
September 20th TJ Faculty Presentation 2006
SPACE EDUCATION PROJECTS Southwest State University, Russia.
Meteorological Spectrum Issues- Outcome of the 2003 World Radiocommunication Conference Presented By: David Franc National Weather Service December 2,
Satellite Communication Systems: Introduction By Prof. Ahmed M. Attiya.
Satellites.
By P.Pranavi Beyond Night Sky. 1957TILL DATE Beyond Night Sky.
Satellite Communications
Using Student Space Assets For Atmospheric Science Research NSF Workshop for Small Satellite Missions For Space Weather and Atmospheric Research George.
What exactly is a satellite? The word satellite originated from the Latin word “Satellite”- meaning an attendant, one who is constantly hovering around.
Ion Energetics of the Modes of the CubeSat Ambipolar Thruster Timothy A. Collard 1, J. P. Sheehan 1, and Alec D. Gallimore 1 1 Aerospace Engineering, University.
Introduction to satellite Communications Lecture (11) 12/24/20151Dr. Hassan Yousif.
Part 3  Transmission Media & EM Propagations.  Provides the connection between the transmitter and receiver. 1.Pair of wires – carry electric signal.
NPOESS Transmission Frequency Issues Satellite Direct Readout Conference for the Americas 11 December 02 David F. McGinnis.
Exploring Space 6.E.1.3 Summarize space exploration and the understandings gained from them.
Space Exploration Past, Present, Future. Space Exploration The Big Picture Space exploration is still in infancy. Although we have learned a lot, we still.
William Stallings Data and Computer Communications 7th Edition
This template can be used as a starter file for presenting training materials in a group setting. Sections Right-click on a slide to add sections. Sections.
2015 in Spaceflight: A year in review Tal Inbar Head, Space Research Center The Fisher Institute for Air & Space Strategic Studies, Israel.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 7 Transmission Media.
What is a satellite?? A satellite is an object that moves around a larger object. Earth and Moon are called “Natural” satellites. “Man-made” satellites.
11.3 The Exploration of Space and Technologies used for Space Exploration Human understanding of Earth and its place in the universe has evolved as technology.
Before, you learned Light and other radiation carry information about space Astronauts explore space near Earth Now, you will learn How space exploration.
COMPUTER NETWORKING 2 LECTURE 6: satellites technology.
ABOVE THE ATMOSPHERE AND UNDER CONTROL Topic 6. Rockets – Getting Up There The science of rocketry relies on a basic physics principle that you learned.
© 2012 Anwendungszentrum GmbH Oberpfaffenhofen Idea by: Dr. Eng. Mohamed Zayan | 1.
Satellite Systems Presented By Sorath Asnani Mehran University of Engineering & Technology, Jamshoro.
Chapter 7 Transmission Media.
JMA Report on Satellite-based Space Weather Activities in Japan
Satellite Communication
Unit I: Introduction.
CUBESATS Karla Vega Mechanical Engineering Department, Space Sciences Laboratory University of California, Berkeley.
Satellite Communications
PROJECT METEOR: RITSAT1 P08102
AMSAT Engineering Program
"يرفع الله الذين آمنوا منكم والذين أوتوا العلم درجات"
Classroom Rocket Scientist
ECE 5233 Satellite Communications
ECE 5233 Satellite Communications
Radio Links.
"يرفع الله الذين آمنوا منكم والذين أوتوا العلم درجات"
Presentation transcript:

Jacob Gavan Fellow IEEE October 2013

Introduction In the Beginning of the 17 th Century KEPLER discovered the existence of Natural Satellites and their Orbit equations, but only in 1957 was Launched the First Russian (Artificial) Satellite SPUTNIK in a Low Earth Orbit(LEO) Due to the Advancements in the Development of Rockets. In 1963 was Launched the first US Geostationary (GEO) Satellite due to the prediction of Arthur Clark in 1945 Inspired by the 3 rd equation of KEPLER. GEO satellites enable reliable long distance radio – communication with minimal interference Satellite is an Interdisciplinary Field and the Subject of Satellite Radio Communication is One of the Most Importance. 2

Introduction: Main Satellite Orbits 3 LEO: Km MEO: ,20000Km GEO: Km LPO :Moon,Planets and future projects In 2013 are operating several Thousands LEO, more than 400 GEO and around 100 MEO satellites.

Classification of Satellites 4 Total Price ($ X M) Insurance Price ($ X M) Launch Price ($ X M) Sat. Price ($ X M) WeightType >5TMega-sat (2-5)TLarge-sat (1-2)TSat ( )KgMini-sat (10-100) KgMicro-sat (1-10)KgNano-sat (0.1-1)KgPico-sat. satellitesthin<0.1kg. VeryFemto-sat. An Important part of the sat. cost is the salary of the specialist s and its space reliability tests.

Micro and Mini-satellites UseOrbitHeight (km) Weight (kg) Manufa- Cturer First launch Micro-sat. Communication Slow data, SMS LEO 35 sat. circular 80080Boeing1998ORBCOMM Small LEO Intelligence, Remote sensing LEO Elliptic IAI5.02OFEK 5 Radio-Amateur Communication LEO Circular 81560TECHNION HAIFA 7.98GURWIN/ OSCAR 32 5 The extreme miniaturization of electronic systems predicted by Moore “doubling the number of elements on an IC each 18 months approximately” enable the building of reliable small sat.. These small sat. can provide good performance at low cost but, due to the limited place, redundancy is difficult to implement, which may limit sat. life time and performances.

Radio Amateur Satellites-OSCAR (Orbital Satellites Carrying Amateurs) Radio OSCAR was founded in 1960.OSCAR1 the first non government Micro Satellite was launched in transmitted Morse signals at 145MHz for 3 weeks. GURWIN/OSCAR32 built in the TECHNION and launched the The Satellite has a cubic form a=44.5cm and operated for more than 10 years at 145, 435 and 1270 MHz. P=20W. Nowadays radio amateurs from more than 24 countries and thousands of Engineering students all over the world are building hundreds of Pico and Nano-satellites. Each earth station is connected with a LEO small Satellite less than 15 minutes for each cycle and 97% of the time is not connected to the specific satellite. Therefore is required a network of earth stations to control and operate properly LEO small satellites. Several amateur satellites failed in launch or operation. 6

Small Satellites Radio Frequencies The LEO small satellites use often the VHF band from (30-300)MHz which are significantly lower than the UHF and SHF Microwave bands used for bigger satellites. The VHF are vulnerable because of the Faraday effect signal distortions from the Ionosphere layers. This effect can usually be neglected in case of narrow bandwidths up to 4.8kbps used generally for small satellites. The terrestrial mutual interference are often higher in VHF. The dispersion losses in VHF are significantly lower than for higher frequency bands which enable reduced transmitter power in the UP-LINK and especially in the power limited DOWN-LINK. 7

Advantages and disadvantages of small Satellites Advantages Low price Fast and low cost construction and replacement Simple and lower cost launching with less pollution Enhance the quantity and quality of students in space technology Disadvantages Increase space junk Limitations in power, redundancy and reliability Less regulations and more interference 8

Thin Satellites Cube-Sat 9 Stanford and Polytechnic California State U. have developed in 1999 an open source standard means for building and launching thin low cost nano and pico satellites. The Cube-sat. kit is a 10cm size cube weighting around 1 kg called the 1U. Are also available the pico-sat. 0.5U or for nano-sat. the 2 and 3U as shown in the figures. A P-POD Poly. Push Out and Deploy sub system is added The cost for academic students to build an 1U cube- sat. is less than $100k.

Cube-sat with many Very Thin FEMTO-SAT 10 5 Comments In the pictures the Cornell U. sprite 2cm x 2cm x 2mm. is printed on a small light wafer of silicon. The Microcontroller is a TI-MSP430. The sprite could include also miniature sensors such as mini cameras, magnetometers and GPS chips. The cube sat could carry hundreds of spring loaded sprites. The sprites could be positioned in orbit till 500km for radio communication by sailing on solar wind dip into space like cosmic dust, without onboard fuel supply.

11 The US Air Force Research Laboratory developed in 2004 the Modular Open Source ARCHitecture (MONARCH) for building small satellites using Plug and Play and 3D printing techniques.

NASA Special Nano-Satellite 12 The high performance NASA’s nano-sat. Aercam was launched from a Space Shuttle (STS) in 2005 to inspect and protect SS and the ISS. The Aercam is just 19cm in diameter, weight only 4.5kg and include a Li Ion battery and propellant. An earlier Aercam could prevent the STS-107 disaster of 2003 and save the life of Ilan Ramon and his friends.

EMC Considerations for Small Satellites The increasing number of sat., especially small and thin, enhance the magnitude and probability of noise and interference. The threats are mostly from the great numbers of sat. built by students, which need to be regulated and controlled from the design steps by EMC experts. Downlink Interference is more important due to the thin sat. limited output power and the strong level of terrestrial VHF interference which reduce S/N+I. 13

Main Mitigation Techniques to Reduce Small Sat. Interference. The important mitigation measures are primary to keep the uplink and downlink Tx output spectrum clean from spurious and out of band noise in order not to disturb other users, especially Radio Astronomers.Secondary to protect the Rx from excessive noise and interference. The main required mitigation techniques are: filtering in the F domain, spatial (nuling) and adaptive filtering for the downlink Rx, shielding and linearization especially for the output Tx stages. De orbit of space junk will also be useful. The leadership of an international regulation organization such as the ITU is a must in collaboration with regional and national institutions. 14

Israel main activities in Small Satellites INSA Israel Nano-Sat Association was founded in INSA cooperates with the Asher institute of the Technion in Haifa and with the IAI in the R&D of small satellites. The Technion is also collaborating with Cornell U. in this field. The Technion has successfully operate the Gurvin mini–sat. Now is developed the INKLAJN nano-sat. that will execute 7 experiments at an altitude of 650km and a cluster of 3 sat. 6kg each for accurate positioning predicted for The homeland security institute in BGU has received in a $1M donation for launching 2 pico-sats carrying remote sensing, communication and GPS technologies. Activities in small sat. at the high school scientific center in Hertzelia and at the international conferences in honor of Ilan Ramon. 15

Participation in the small satellite market (Euro consult) 90% of the small sat. are for academic projects and the rest for government and commercial purposes, but only 10% of the budget are for academic projects. The US has 30% share due to high-demand from NASA and the DOD. Europe enjoys a 25% share, while Asia follows with 22% thanks to activities in China and Japan. Russia has a 13% share of the market, while the Middle East and Africa tops 9% and the rest of the world follows with 5%. 16

Forecasting for Small Satellites Development of complex small sat. clusters for home security and other applications. Protection of important sat. by several small sat. sentinels. Modular open network architecture, Plug and Play and 3-D printing advanced techniques for fast design of small sat. Operation of efficient techniques for reducing interference and de-orbit space junk. Design of miniature smaller than Femto-sat. up to the level of Sat. on a chip (SOC). Development of small sat. for the exploration of the moon and the planets. National and International enhanced activities of students for improving their skills in STEM and in the design and building of small satellites. 17

Conclusions The investing, development and operation of small satellites are increasing significantly due to their usefulness and several advantages over bigger sat. especially in low cost and fast productions The applications of the interdisciplinary small sat. field are numerous from military to educational and the radio sub systems are of most importance. The low cost, open source standards and short time required to build and launch small sat. will enhance the quantity and quality of needy space engineers and scientists. EMC strict regulations and reduction of interference sources is a must for the development of thin sat. systems. 18

Selected References 1. pp( )1 יעקב גוון " לוויינים קשר התקשורת " עיתון מדע של מכון וייצמן 4\984 2.SO Keefe “Pioneering the Future” NASA Facts December 2002 pp(1-12). 3. E.Emma, and All; “Motivating Young Europeans for a future in Space” ESA Bulletin N135 August 2008 pp(27-35) 4. J.C.Lyke, J.Mac Neill; “Plug and Play Satellites” IEEE Spectrum Vol pp(30-36) 5. A.Torkild,and All; “Maritime Traffic Monitoring using a Space based AIS Receiver” Acta Astronautica Vol. 58 May 2006 pp( ). 6. R.R Milliron, “Enabling Space Access” Sat. Magazine: The Microsatellite market R.R Milliron, “Insigth: Inter-orbital Fosters Small Satellite Surge ”Sat. Magazine Comtech Aeroastro, *Focus the Power of the Pico-satellites” Sat Magazine H Page, R.Walker; “Flying Students Experiments to he Edge of Space” ESA Bulletin N 144 February 2012 pp(33-38). 10. J.Gavan,R.Perez,editor; “Handbook of Electro Magnetic Compatibility” Chapters 19,20; Academic Press,

References (2) 11. Casro, et All; “GENSO Pre-Operational Activities and Preparation for GEOID/HUMSAT Operations” ESA Bulletin N149 February 2012 PP( J.Foust, “Emerging opportunities for low cost small satellites in civil and commercial space” Futron report H.Helvasian, S.W. Janson Editors; ”Small Satellites : Past, Present and Future” The Aerospace Press AIIA T. Bekey; “ Advanced Space Systems Concepts and technologies: ” The Aerospace Press J.A. Atchison,M.A.Peck ;“A Passive Sun-Pointing Millimeter-Scale Solar Sail” Acta Astronautico, Vol.67,7/8 2010, PP( ). 16. M.A. Peck; “How Sat. the Size of Chips Could Revolutionize the Way we Explore Space”;IEEE Spectrum August 2011, PP(39-43). 17. P.Fortescue, G.Swinerd, J.stark, Editors; “Spacecraft Systems Engineering”,4 th edition, 2011, J. Wiley

Thin Planet satellites: Development, State of the Art and EMC Issues Headlines Introduction Classification of Satellites Description of Small and Thin Satellites. Radio Amateurs and Students Thin Satellites Development of Very Thin Satellites Worldwide Activities in Thin Satellites Interference effects Concerning Thin Satellites Forecasting and Conclusions Selected References 21

Main Applications of Small Satellites Radio communication systems with limited power and bandwidth including Radio Amateur Services M2M and Automatic Identification Systems (AIS) Weather predictions Remote sensing Earth and atmosphere exploration Scientific Research Cluster operation using tether or radio links Intelligence, Surveillance and Reconnaissance (ISR) military and defense missions Test of new space systems and technologies Training man power in space technology and science 22

23

Swiss Cubesat. to reduce junk 24 A previous EPFL Swiss cube sat. was launched on 9.09 from India for scientific missions and radio amateurs services at 375 MHz. and is still operating.

Far East Activity Special Student Pico-sat. from Vietnam. 25 This LEO Pico-sat was launched in from the ISS with 7 other small sat. using a Japanese robotic arm.

NASA and DARPA Main Activities NASA, DARPA and the DOD have collaborated in the FASTSAT project investing $80M (for2010 only) to develop high quality special small satellites and launchers. Comtech-Aeroaustro & Utah state U. have developed for NASA a Coral bus, a P pad launcher, a 3U cube-sat. kit, and STP novel and high reliability small satellites. Development of small satellites with education institutions for attracting, motivating and training engineers and scientists, especially in space science. In 2011/12 the NASA participated in the design and launched free of charge 8 US students sat. For 2013/14 will be launched 32 sat. up to a total weight of 45kg. 26

Future Femto Sat (2) Sprites use a multi-chip module architecture to achieve a form factor of 2cm x 2cm x 2mm. Using matched filtering techniques, the sprite can close a communications link from a 500km orbit altitude. In the design packages the traditional spacecraft systems (power, propulsion, communications, etc) will be included into a single silicon microchip smaller than a dime and unconstrained by onboard fuel. The target is a Sat. On a Chip (SOC) 27