Section 2.6 Related Rates.

Slides:



Advertisements
Similar presentations
5.5 Section 4.6 – Related Rates
Advertisements

2.6 Related Rates.
Section 4.6 – Related Rates PICK UP HANDOUT FROM YOUR FOLDER 5.5.
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.
Teresita S. Arlante Naga City Science High School.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
8. Related Rates.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
RELATED RATES Mrs. Erickson Related Rates You will be given an equation relating 2 or more variables. These variables will change with respect to time,
Related rates.
2.8 Related Rates.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
Related Rates Test Review
Aim: How do we find related rates when we have more than two variables? Do Now: Find the points on the curve x2 + y2 = 2x +2y where.
Review- 4 Rates of Change
Linearization , Related Rates, and Optimization
Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 267 # 1-19 odd, 23, 25, 29.
AP Calculus AB Chapter 2, Section 6 Related Rates
R ELATED R ATES. The Hoover Dam Oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant.
3.9 Related Rates 1. Example Assume that oil spilled from a ruptured tanker in a circular pattern whose radius increases at a constant rate of 2 ft/s.
Calculus warm-up Find. xf(x)g(x)f’(x)g’(x) For each expression below, use the table above to find the value of the derivative.
Warmup 1) 2). 4.6: Related Rates They are related (Xmas 2013)
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
Related Rates. I. Procedure A.) State what is given and what is to be found! Draw a diagram; introduce variables with quantities that can change and constants.
S ECTION 3.6 R ECAP Derivatives of Inverse Functions.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
Related Rates.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
RELATED RATES Example 1 Air is being pumped into a spherical balloon so that its volume increases at a rate of 100 cm3/s. How fast is the radius of the.
DO NOW Approximate 3 √26 by using an appropriate linearization. Show the computation that leads to your conclusion. The radius of a circle increased from.
Car A and B leave a town at the same time. Car A heads due north at a rate of 75km/hr and car B heads due east at a rate of 80 km/hr. How fast is the.
Warm Up Day two Write the following statements mathematically John’s height is changing at the rate of 3 in./year The volume of a cone is decreasing.
Implicit Differentiation & Related Rates Review. Given: y = xtany, determine dy/dx.
Related Rates 5.6.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
Related Rates 3.6.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
Examples of Questions thus far…. Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
3 DERIVATIVES.
Find if y 2 - 3xy + x 2 = 7. Find for 2x 2 + xy + 3y 2 = 0.
Jeopardy Related Rates Extreme Values Optimizat ion Lineari zation $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 Final Jeopardy.
Logarithmic Differentiation 对数求导. Example 16 Example 17.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
3.10 – Related Rates 4) An oil tanker strikes an iceberg and a hole is ripped open on its side. Oil is leaking out in a near circular shape. The radius.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
MATH 1910 Chapter 2 Section 6 Related Rates.
Section 2-6 Related Rates
Sect. 2.6 Related Rates.
Hold on to your homework
Table of Contents 19. Section 3.11 Related Rates.
Related Rates AP Calculus AB.
Related Rates.
Chapter 3, Section 8 Related Rates Rita Korsunsky.
AP Calculus BC September 12, 2016.
Section 2.6 Calculus AP/Dual, Revised ©2017
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Math 180 Packet #9 Related Rates.
§3.9 Related rates Main idea:
Related Rates Section 3.9.
AGENDA: 1. Copy Notes on Related Rates and work all examples
Related Rates AP Calculus Keeper 26.
Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm3/s. How fast is the radius of the balloon.
Presentation transcript:

Section 2.6 Related Rates

What exactly is a “Related rate”? a “related rate” problem occurs when two or more variables are changing with respect to TIME in a given situation (means that t is the “chief” variable and you therefore differentiate with respect to t)

Procedure in solving these types of problems… pg. 150, gray box entitled “Guidelines For Solving Related-Rate Problems” (copy into your notebook)

TyPE #1: expanding/shrinking object A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate of 2 ft/sec. When the radius is 5 feet, at what rate is the total area A of the disturbed water changing?

Another example: Air is being left out of a spherical balloon at a rate of 3.5 cm3/min.  Determine the rate at which the radius of the balloon is decreasing when the diameter of the balloon is 20 cm.

AND ONE MORE… Oil spilled from a ruptured tanker spreads out in a circle whose area increases at a constant rate of 6 mi2/hr.  How fast is the radius of the spill increasing when the area is 9 square miles?

TYPE #2: The “slipping ladder” An 8 foot long ladder is leaning against a wall.  The top of the ladder is sliding down the wall at the rate of 2 feet per second.  How fast is the bottom of the ladder moving along the ground at the point in time when the bottom of the ladder is 4 feet from the wall.

ANOTHER EXAMPLE… A 25-foot ladder is leaning against a vertical wall. The floor is slightly slippery and the foot of the ladder slips away from the wall at the rate of 0.2 inches per second. How fast is the top of the ladder sliding down the wall when the top is 20 feet above the floor?

And one more… A 15 foot ladder is resting against the wall.  The bottom is initially 10 feet away from the wall and is being pushed towards the wall at a rate of .25 ft/sec.  How fast is the top of the ladder moving up the wall 12 seconds after we start pushing?

Type #3: The filling (or unloading) cone/trough A conical water tank with vertex down has a radius of 10 feet at the top and is 24 feet high. If water flows out of the tank at a rate of 20 cubic feet per minute, how fast is the depth of the water decreasing when the water is 16 feet deep?

Another one… Water is flowing into an inverted right circular cone at a rate of 4 cubic inches per minute. The cone is 16 inches tall and its base has a radius of 4 inches. At the moment the water has a depth of 5 inches, how fast is the radius at the surface of the water increasing?

And one more… A tank of water in the shape of a cone is leaking water at a constant rate of 2 cubic feet per hour.  The base radius of the tank is 5 ft and the height of the tank is 14 ft.  (a) At what rate is the depth of the water in the tank changing when the depth of the water is 6 ft? (b) At what rate is the radius of the top of the water in the tank changing when the depth of the water is 6 ft?

TYPE #4: The “pushing” problem A person is pushing a box up a 30 foot long ramp at the rate of 4.5 feet per second. The ramp rises to a height of 7 feet. How fast is the box rising? A package, while being pushed along a conveyor belt “ramp”, is being risen at a rate of 3.5 feet per second. If the conveyor belt is 40 feet long and rises to a height of 5 feet, how fast is the package being pushed horizontally along the belt?