1 Recollimation Shock, Transverse Waves and the Whip in BL Lacertae M.H. Cohen Caltech Granada 13 vi 2013.

Slides:



Advertisements
Similar presentations
Imaging nearby AGN at ultra high resolution with RadioAstron Tuomas Savolainen Aalto University Metsähovi Radio Observatory Max-Planck-Institut für Radioastronomie.
Advertisements

Probing the Radio Counterpart of Gamma-ray Flaring Region in 3C 84 Hiroshi Nagai (National Astronomical Observatory of Japan) In collaboration with Monica.
Connection between the parsec-scale radio jet and γ-ray flare in the blazar Venkatessh Ramakrishnan Aalto University Metsähovi Radio Observatory,
Probing the TeV Emission and Jet Collimation Regions in M87
Method To determine the multiplicity parameter and the magnetization parameter  one can use the dependence on the visible position of the core of the.
Constraints on Blazar Jet Conditions During Gamma- Ray Flaring from Radiative Transfer Modeling M.F. Aller, P.A. Hughes, H.D. Aller, & T. Hovatta The γ-ray.
The Jet Recollimation Shock: A Dramatic Altering of Jet Magnetic and Kinematic Structure On Difficult-to-Observe Scales David L. Meier & Marshall H. Cohen.
M87 - WalkerVSOP-2 Symposium, Sagamihara, Japan Dec IMAGING A JET BASE - PROSPECTS WITH M87 R. Craig Walker NRAO Collaborators: Chun Ly (UCLA - was.
The MOJAVE AGN Program Dept. of Physics Purdue University (currently on sabbatical at Univ. College Cork, Ireland) Matthew Lister VLBA Fermi UMRAOOVRO.
Relativistic Particle Acceleration in a Developing Turbulence Relativistic Particle Acceleration in a Developing Turbulence Shuichi M ATSUKIYO ESST Kyushu.
Kinematics of Jets of Gamma-Ray Blazars from VLBA Monitoring at 43 GHz Svetlana Jorstad Boston University, USA St.Petersburg State University, Russia VLBA.
The MOJAVE Program: Investigating Evolution in AGN Jets Collaborators : M. Cara, N. Cooper, S. Kuchibhotla, S. Nichols, A. Lankey, N. Mellott, K. O'Brien.
Multi-Wavelength Time Variability of Active Galactic Nuclei Ritaban Chatterjee Advisor: Prof. Alan P. Marscher Collaborators: Svetlana Jorstad (B.U.),
(More) Evidence of Disk-Jet Connection in the Radio Galaxy 3C 120 Ritaban Chatterjee, Boston University. Radio Galaxies in the Chandra Era, July 11 th,
VLBA polarimetry of the Fermi-detected quasar B : a rare “spine and sheath” polarisation structure Jun Yang (JIVE, Netherlands) Alaxander B. Pushkarev.
4/19/2017 7:18 PM Linear and circular radio and optical polarization studies as a probe of AGN physics I. Myserlis E. Angelakis (PhD advisor), L. Fuhrmann,
Direct imaging of AGN jets and black hole vicinity Tiziana Venturi Active Galactic Nuclei 9 Ferrara,
Parsec-scale Jets in Lobe-dominated Quasars David Hough Trinity University Abstract: In order to test relativistic jet and AGN models over a wide range.
An Exceptional Radio Flare in Markarian 421 Joseph L. Richards, Talvikki Hovatta, Matthew L. Lister, Anthony C. S. Readhead, Walter Max-Moerbeck, Tuomas.
RTS Manchester Two special radio AGN: BL Lac and J Ger de Bruyn + work with J-P. Macquart ASTRON, Dwingeloo & Kapteyn Institute,
Statistical analysis of model-fitted inner-jets of the MOJAVE blazars Xiang Liu, Ligong Mi, et al. Xinjiang Astronomical Observatory (Former Urumqi Observatory),
The quasar PKS : Direct evidence for a changing orientation of the central engine. John Wardle (Brandeis), Dan Homan (NRAO), C. C. Cheung & Dave.
S. Jorstad / Boston U., USA A. Marscher / Boston U., USA J. Stevens / Royal Observatory, Edinburgh, UK A. Stirling / Royal Observatory, Edinburgh, UK M.
Intrinsic structure and kinematics of the sub-parsec scale jet of M87
I.Introduction  Recent evidence from Fermi and the VLBA has revealed a strong connection between ɣ -ray emission in AGNs and their parsec-scale radio.
GLAST & Multiwaveband Monitoring as Probes of Bright Blazars Alan Marscher Boston University Research Web Page:
Real vs. Simulated Relativistic Jets Socorro 2003 Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain Institut d’Estudis Espacials de Catalunya/CSIC,
3C120 R. Craig Walker National Radio Astronomy Observatory Socorro, NM Collaborators: J.M. Benson, S.C. Unwin, M.B. Lystrup, T.R.Hunter, G. Pilbratt, P.E.
Ultra-high Resolution Space-VLBI Imaging of Jets in Nearby AGN Tuomas Savolainen Aalto University Metsähovi Radio Observatory, Finland Max-Planck-Institut.
AGN Jets: A Review for Comparison with Microquasars & GRBs Alan Marscher Boston University Research Web Page:
Jet dynamics and stability Manel Perucho Universitat de València The innermost regions of relativistic jets and their magnetic fields Granada, June 2013.
Blazars: VLBA and GLAST Glenn Piner Whittier College.
S. Jorstad / Boston U., USA /St. Petersburg State U., Russia A.Marscher / Boston U., USA M. Lister / Purdue U., USA A. Stirling / U. of Manchester, Jodrell.
Probing the Inner Jet of the Quasar PKS 1510  089 with Multi-waveband Monitoring Alan Marscher Boston University Research Web Page:
The MOJAVE Program: Studying the Relativistic Kinematics of AGN Jets Jansky Postdoctoral Fellow National Radio Astronomy Observatory Matthew Lister.
Polarization of AGN Jets Dan Homan National Radio Astronomy Observatory.
THE KINEMATICS OF th EVN SYMPOSIUM N.A. Kudryavtseva 1, S. Britzen 1, J. Roland 2, A. Witzel 1, E. Ros 1, A. Zensus 1, A. Eckart 3.
From the Black Hole to the Telescope: Fundamental Physics of AGN Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory,
Quasars and Active Galactic Nuclei
A Global 86 GHz VLBI Survey of Compact Radio Sources Sang-Sung Lee MPIfR In collaboration with A.P. Lobanov, T.P. Krichbaum, A. Witzel, J.A. Zensus (MPIfR,
Iván Agudo with the collaboration of: S.N. Molina, J. L. Gómez (IAA-CSIC) T. P. Krichbaum, A. Roy, U. Bach (MPIfR) I. Martí Vidal (Chalmers) B. Campbell.
Multi-Frequency Polarization Studies of AGN Jets Denise Gabuzda (University College Cork)
Quasi-Periodicity in the Parsec-Scale Jet of the Quasar 3C345 - A High Resolution Study using VSOP and VLBA - In collaboration with: J.A. Zensus A. Witzel.
AGN: Linear and Circular Polarization
IMAGING AND SPECTOROPIC INVESTIGATIONS OF A SOLAR CORONAL WAVE: PROPERTIES OF THE WAVE FRONT AND ASSOCIATED ERUPTING MATERIAL L OUISE K. HARRA AND A LPHONSE.
Analysis of strong outbursts in selected blazars. Pyatunina T.B., Kudryavtseva N.A., Gabuzda D.C., Jorstad S.G., Aller M.F., Aller H.D., Terasranta H.
Magnetic field structure of relativistic jets in AGN M. Roca-Sogorb 1, M. Perucho 2, J.L. Gómez 1, J.M. Martí 3, L. Antón 3, M.A. Aloy 3 & I. Agudo 1 1.
The jet of the LLAGN of M81: Evidence of Precession Antxon Alberdi Instituto de Astrofísica de Andalucía (IAA-CSIC) Iván Martí-Vidal (ALMA Nordic Node;
Gabuzda, Murray & Cronin astro-ph/
P ROBING THE MAGNETIC FIELD OF 3C 279 by Sebastian Kiehlmann on behalf of the Quasar Movie Project team Max Planck Institute for Radio Astronomy, Auf dem.
Is the Inner Radio Jet of BL Lac Precessing? R. L. Mutel University of Iowa Astrophysics Seminar 17 September 2003.
The MOJAVE Program: Investigating Relativistic Jets in AGN Collaborators : M. Cara, N. Cooper, S. Kuchibhotla (Purdue) A. Lankey, N. Mellott, K. O'Brien.
Hydrodynamics of Small- Scale Jets: Observational aspects Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory, Helsinki.
Malaga, May Matt Lister Department of Physics & Astronomy Purdue University, USA AGN Jet Kinematics on Parsec Scales.
Long-term X-ray Variability in Blazars & its Multiwaveband Context Alan Marscher Boston University Research Web Page: Alan Marscher.
Dan Homan Denison University
VLBA Observations of Blazars
Double EVPA Rotations in OJ 287
On behalf of the Radio-Agile AGN WG
Wave heating of the partially-ionised solar atmosphere
A VLBA MOVIE OF THE JET LAUNCH REGION IN M87
Frequency-dependent core shift
Radio-Optical Study of Double-Peaked AGNs: 3C 390.3
X-Raying the MOJAVE Sample of Compact Extragalactic Radio Jets
Gamma-ray emission along the radio jet:
Radio Observations of Nearby HST BL Lacs
Quasars and Active Galactic Nuclei
There and back again by Mikhail Lisakov MPIfR
Compact radio jets and nuclear regions in galaxies
EVN observations of OH maser burst in OH
Presentation transcript:

1 Recollimation Shock, Transverse Waves and the Whip in BL Lacertae M.H. Cohen Caltech Granada 13 vi 2013

2 M. Lister (P.I.), J. Richards (Purdue) T. Arshakian (Univ. of Cologne, Germany) M. and H. Aller (Michigan) M. Cohen, T. Hovatta, (Caltech) D. Homan (Denison) M. Kadler, M. B ö ck (U. Wurzburg, Germany) K. Kellermann (NRAO) Y. Kovalev (ASC Lebedev, Russia) A. Lobanov, T. Savolainen, J. A. Zensus (MPIfR, Germany) D. Meier (JPL) A. Pushkarev (Crimean Observatory, Ukraine) E. Ros (Valencia, Spain) MOJAVE Collaborators M onitoring O f J ets in A ctive Galaxies with V LBA E xperiments Very Long Baseline Array The MOJAVE Program is supported NASA Fermi Grant NNX08AV67G 2 Granada 13 vi 2013

3 BL Lac Topics 3 Components, Ridge Line Recollimation Shock PA Variations: Wobble Transverse Waves Wave Speeds Relaxation in 2010: Wiggle Conclusions Granada 13 vi 2013

4 Components Granada 13 vi Components are a small number of elliptical Gaussians that sum to the image. They usually are circular. A component is often a bright spot in the image. Components are tracked in time, if the cadence of observations is fast enough.

5 Ridge Line Granada 13 vi BL Lac is elongated and has a ridge. Most components move downstream along the ridge (±0.1 mas)

Granada 13 vi Ridge Line and Components

7 Several New Components per Year Max Speed 10.6c Granada 13 vi 2013

BL Lac Component Tracks 8 Granada 13 vi 2013 quasi-stationary recollimation shock

99 Recollimation Shock Component 7 = recollimation shock Analogy to M87, 3C120 Simulation (Lind et al 1999,...) shows a‘magnetic chamber’ and fast cpts ejected into a ‘nose cone’ (not full 3D RMHD) (Meier p715) Need strong toroidal component in the magnetic field Granada 13 vi 2013

10 z vmax dist from core 3C c ~ 5 mas 3.1 * 80 mas ~ 3x10 7 r g M ** >= 10 6 r g BL Lac # ~ 10 6 r g * downstream from C1 Agudo et al 2012 ** downstream from HST1 Cheung et al 2007 # downstream from cpt 7 MOJAVE 10 Recollimation Shock II Granada 13 vi 2013

11 BL Lac Position Angle vs Epoch

Granada 13 vi V ≈ 1.15 mas yr -1 ≈ 4.8 c Transverse Wave A B A B

Shifted Ridge Lines Granada 15 vi

Transverse Waves Granada 15 vi 2013 V ≈ 0.80 mas yr -1 ≈ 3.3 c

15 Transverse Wave Granada 13 vi

16 Component 16 Advected with the Transverse Wave Granada 13 vi

17 Several New Components per Year Max Speed 10.6c Granada 13 vi 2013

BL Lac Component Tracks 18 Granada 13 vi 2013 quasi-stationary recollimation shock Centerline PA=166 o

BL Lac wiggle 19 Granada 15 vi 2013 PA ≈ 171 o

Granada 13 vi Strong quasi-stationary component is identified as a recollimation shock. Distance from core ~ 10 6 r g Superluminal components appear to come from or through the recollimation shock. BL Lac Conclusions I

BL Lac Conclusions II Granada 13 vi Jet supports transverse waves. Waves have superluminal speed. Waves are correlated with swings in the inner PA. Components are advected with the transverse motion. Jet acts more like a rope than a water hose. When wave activity dies down, a stable wiggle appears.

Granada 13 vi These observations support a model in which the jet contains a strong toroidal magnetic field. Transverse waves (Alfven?) are excited by PA swings of the nozzle, and propagate superluminally downstream, as large- scale wiggles on the ridge line. The superluminal components (fast MHD waves?) stay on the ridge, and can be advected transversely. In 2009 the waves died down, and a small-scale stationary wiggle appeared on the jet. Conclusions III