Projectile Motion.

Slides:



Advertisements
Similar presentations
Physics: Principles with Applications, 6th edition
Advertisements

Motion in Two and Three Dimensions; Vectors
Kinematic Equations and Projectile Motion
Section 3-5: Projectile Motion
7-2 Projectile Motion. Independence of Motion in 2-D Projectile is an object that has been given an intial thrust (ignore air resistance)  Football,
Chap 3 :Kinematics in 2D, 3D and Projectile Motion HW4: Chap.3:Pb.14,Pb.57, Pb.87 Chap 4:Pb.3, Pb.4, Pb.12, Pb.27, Pb. 37 Due Friday 26.
Projectile Motion.
© 2014 John Wiley & Sons, Inc. All rights reserved.
Projectile Motion. What Is It? Two dimensional motion resulting from a vertical acceleration due to gravity and a uniform horizontal velocity.
Chapter 4 Motion in Two Dimensions EXAMPLES. Example 4.1 Driving off a cliff. y i = 0 at top, y is positive upward. Also v yi = 0 How fast must the motorcycle.
Projectile Motion Neglecting air resistance, what happens when you throw a ball up from the back of a moving truck? Front? Behind? In?
Physics  Free fall with an initial horizontal velocity (assuming we ignore any effects of air resistance)  The curved path that an object follows.
Copyright © 2009 Pearson Education, Inc. PHY093 – Lecture 2b Motion with Constant Acceleration 2 Dimensions 1.
Kinematics in 2 Dimensions
Projectile Motion Lecturer: Professor Stephen T. Thornton.
What is Projectile Motion?
AIM: How can we describe the path of an object fired horizontally from a height above the ground? DO NOW: A ball rolls off a table top with an initial.
Do now A B + = ? The wrong diagrams Draw the right diagram for A + B.
Projectiles.
Chapter 3 Kinematics in Two Dimensions; Vectors Units of Chapter 3 Vectors and Scalars Addition of Vectors – Graphical Methods Subtraction of Vectors,
3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
More Projectile Motion Discussion: Examples
Motion in Two or Three Dimensions
Projectile Motion. What Is It? Two dimensional motion resulting from a vertical acceleration due to gravity and a uniform horizontal velocity.
Chapter 3 Kinematics in Two Dimensions; Vectors Trigonometry Review.
Chapter 3 Kinematics in Two Dimensions; Vectors. Units of Chapter 3 Vectors and Scalars Addition of Vectors – Graphical Methods Subtraction of Vectors,
PDT 180 ENGINEERING SCIENCE Vectors And Scalars (Continue)
One Dimensional Kinematics: Problem Solving Kinematics in Two-Dimensions: Law of Addition of Velocities Projectile Motion 8.01 W02D1.
Projectile Motion objectives 1.What is a Projectile?What is a Projectile? 2.Characteristics of a Projectile's TrajectoryCharacteristics of a Projectile's.
1 PPMF101 – Lecture 4 Motions in 1 & 2 Dimensions.
Chapter 3 Kinematics in Two Dimensions; Vectors. Units of Chapter 3 Projectile Motion Solving Problems Involving Projectile Motion Projectile Motion Is.
Kinematics Kinematics – the study of how things move
Motion in Two Dimensions
Parabolic or Projectile Motion
Objectives: The student will be able to:
Projectile Motion Examples. Example 3-6: Driving off a cliff!! y is positive upward, y 0 = 0 at top. Also v y0 = 0 v x = v x0 = ? v y = -gt x = v x0 t,
Chap. 3: Kinematics in Two or Three Dimensions: Vectors.
CHAPTER 6 MOTION IN 2 DIMENSIONS.
Motion in Two Dimensions. Projectile Motion: the motion of a particle that is projected or launched and only accelerated by gravity. cp: 5.
SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. b. Compare and contrast scalar and vector quantities.
Motion in Two Dimensions. Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola.
Motion in Two Dimensions Chapter 7.2 Projectile Motion What is the path of a projectile as it moves through the air? Parabolic? Straight up and down?
Projectile Motion Falling things, and rockets ‘n’ that… AP Physics Unit 1 Oct 10 Lesson 2.
Projectile Motion.
Do Now A tennis ball is dropped from the top of a building. It strikes the ground 6 seconds after being dropped. How high is the building? (b) What is.
Chapter 3 Kinematics in Two Dimensions; Vectors 1.
Chapter Projectile Motion 6.1.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
AP PHYSICS Chapter 3 2-D Kinematics. 2-D MOTION The overriding principle for 2-Dimensional problems is that the motion can be resolved using vectors in.
Chapter 3 Kinematics in Two Dimensions; Vectors © 2014 Pearson Education, Inc.
PROJECTILE MOTION CHAPTER 3.5. PROJECTILE MOTION THE MOTION OF OBJECTS THROUGH THE AIR IN TWO DIMENSIONS.
Part 1 Projectiles launched horizontally
Chapter 3 Kinematics in Two Dimensions; Vectors
Chapter Projectile Motion 6.1.
What is Projectile Motion?
Section 3-7: Projectile Motion
3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. Figure Caption:
Projectile Review.
Chapter 4:Dynamics: Newton’s Law of Motion
Projectile Motion Unit 6.
Chapter 3 Kinematics in Two Dimensions; Vectors
Motion in Two Directions
Projectile Motion.
Projectile Motion.
Kinematics in Two Dimensions; Vectors
Kinematics in Two Dimensions
Projectile Motion Physics 101.
Kinematics in Two Dimensions
Presentation transcript:

Projectile Motion

3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. Figure 3-19. Caption: This strobe photograph of a ball making a series of bounces shows the characteristic “parabolic” path of projectile motion.

3-7 Projectile Motion It can be understood by analyzing the horizontal and vertical motions separately. Figure 3-20. Caption: Projectile motion of a small ball projected horizontally. The dashed black line represents the path of the object. The velocity vector at each point is in the direction of motion and thus is tangent to the path. The velocity vectors are green arrows, and velocity components are dashed. (A vertically falling object starting at the same point is shown at the left for comparison; vy is the same for the falling object and the projectile.)

3-7 Projectile Motion The speed in the x-direction is constant; in the y-direction the object moves with constant acceleration g. This photograph shows two balls that start to fall at the same time. The one on the right has an initial speed in the x-direction. It can be seen that vertical positions of the two balls are identical at identical times, while the horizontal position of the yellow ball increases linearly. Figure 3-21. Caption: Multiple-exposure photograph showing positions of two balls at equal time intervals. One ball was dropped from rest at the same time the other was projected horizontally outward. The vertical position of each ball is seen to be the same at each instant.

3-7 Projectile Motion If an object is launched at an initial angle of θ0 with the horizontal, the analysis is similar except that the initial velocity has a vertical component. Figure 3-22. Caption: Path of a projectile fired with initial velocity v0 at angle θ0 to the horizontal. Path is shown dashed in black, the velocity vectors are green arrows, and velocity components are dashed. The acceleration a = dv/dt is downward. That is, a = g = -gj where j is the unit vector in the positive y direction.

3-8 Solving Problems Involving Projectile Motion Projectile motion is motion with constant acceleration in two dimensions, where the acceleration is g and is down.

3-8 Solving Problems Involving Projectile Motion Read the problem carefully, and choose the object(s) you are going to analyze. Draw a diagram. Choose an origin and a coordinate system. Decide on the time interval; this is the same in both directions, and includes only the time the object is moving with constant acceleration g. Examine the x and y motions separately.

3-8 Solving Problems Involving Projectile Motion 6. List known and unknown quantities. Remember that vx never changes, and that vy = 0 at the highest point. 7. Plan how you will proceed. Use the appropriate equations; you may have to combine some of them.

3-8 Solving Problems Involving Projectile Motion Example 3-6: Driving off a cliff. A movie stunt driver on a motorcycle speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave the cliff top to land on level ground below, 90.0 m from the base of the cliff where the cameras are? Ignore air resistance. Figure 3-23. Answer: The x velocity is constant; the y acceleration is constant. We know x0, y0, x, y, a, and vy0, but not vx0 or t. The problem asks for vx0, which is 28.2 m/s.

3-8 Solving Problems Involving Projectile Motion Example 3-7: A kicked football. A football is kicked at an angle θ0 = 37.0° with a velocity of 20.0 m/s, as shown. Calculate (a) the maximum height, (b) the time of travel before the football hits the ground, (c) how far away it hits the ground, (d) the velocity vector at the maximum height, and (e) the acceleration vector at maximum height. Assume the ball leaves the foot at ground level, and ignore air resistance and rotation of the ball. Figure 3-24. Answers: a. This can be calculated using vertical variables only, giving 7.35 m. b. The equation for t is quadratic, but the only meaningful solution is 2.45 s (ignoring the t = 0 solution). c. The x velocity is constant, so x = 39.2 m. d. At the highest point, the velocity is the (constant) x velocity, 16.0 m/s. e. The acceleration is constant, 9.80 m/s2 downward.

3-8 Solving Problems Involving Projectile Motion Conceptual Example 3-8: Where does the apple land? A child sits upright in a wagon which is moving to the right at constant speed as shown. The child extends her hand and throws an apple straight upward (from her own point of view), while the wagon continues to travel forward at constant speed. If air resistance is neglected, will the apple land (a) behind the wagon, (b) in the wagon, or (c) in front of the wagon? Figure 3-25. Response: The child throws the apple straight up from her own reference frame with initial velocity vy0 (Fig. 3–25a). But when viewed by someone on the ground, the apple also has an initial horizontal component of velocity equal to the speed of the wagon, vx0. Thus, to a person on the ground, the apple will follow the path of a projectile as shown in Fig. 3–25b. The apple experiences no horizontal acceleration, so vx0 will stay constant and equal to the speed of the wagon. As the apple follows its arc, the wagon will be directly under the apple at all times because they have the same horizontal velocity. When the apple comes down, it will drop right into the outstretched hand of the child. The answer is (b).

3-8 Solving Problems Involving Projectile Motion Conceptual Example 3-9: The wrong strategy. A boy on a small hill aims his water-balloon slingshot horizontally, straight at a second boy hanging from a tree branch a distance d away. At the instant the water balloon is released, the second boy lets go and falls from the tree, hoping to avoid being hit. Show that he made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance. Figure 3-26. Response: Both the water balloon and the boy in the tree start falling at the same instant, and in a time t they each fall the same vertical distance y = ½ gt2, much like Fig. 3–21. In the time it takes the water balloon to travel the horizontal distance d, the balloon will have the same y position as the falling boy. Splat. If the boy had stayed in the tree, he would have avoided the humiliation.

Summary A projectile is any object upon which the only force is gravity, Projectiles travel with a parabolic trajectory due to the influence of gravity, There are no horizontal forces acting upon projectiles and thus no horizontal acceleration, The horizontal velocity of a projectile is constant (a never changing in value), There is a vertical acceleration caused by gravity; its value is 9.8 m/s/s, down, The vertical velocity of a projectile changes by 9.8 m/s each second, The horizontal motion of a projectile is independent of its vertical motion. The time an object goes up, equals the time it takes to fall back down. If an object is traveling in a vehicle it has the same velocity as the vehicle (for purposes of using initial velocity)

Jackie Dunn, professor at Midwestern State University faculty.mwsu.edu/physics/jackie.dunn/phys1624/ch3p2.ppt