Transport Layer 4 Slides from Kurose and Ross

Slides:



Advertisements
Similar presentations
CS 4284 Systems Capstone Networking Godmar Back.
Advertisements

Transport Layer3-1 Homework r Chapter 2#10,13-18 r Due Wed September 17.
Transport Layer3-1 Pipelined protocols Pipelining: sender allows multiple, “in-flight”, yet-to- be-acknowledged pkts m range of sequence numbers must be.
Introduction 1 Lecture 12 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Transport Layer 3-1 Transport services and protocols  provide logical communication between app processes running on different hosts  transport protocols.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Chapter 3 outline 3.1 transport-layer services
Transport Layer3-1 Principles of Reliable data transfer r important in app., transport, link layers r top-10 list of important networking topics! r characteristics.
The Future r There will be a Wireshark TCP homework up on the wiki later today. It will be due Wednesday. r The next test is coming soon – next Wednesday????
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer3-1 Data Communication and Networks Lecture 6 Reliable Data Transfer October 12, 2006.
Announcement Project 1 due last night, how is that ? Project 2 almost ready, out tomorrow, will post online –Much harder than project 1, start early!
Announcement Project 1 due last night, how is that ? Homework 1 grade, comments out –Will be discussed in the next lecture Homework 2 out Project 2 almost.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 9.
Transport Layer3-1 Reliable Data Transfer. Transport Layer3-2 Principles of Reliable data transfer r important in app., transport, link layers r top-10.
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
The Data Link Layer. Data Link Layer Design Issues Services Provided to the Network Layer Framing Error Control Flow Control.
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
3-1 Sect. 3.4 Principles of reliable data transfer Computer Networking: A Top Down Approach Featuring the Internet, 1 st edition. Jim Kurose, Keith Ross.
CPSC 441: Reliable Transport1 Reliable Data Transfer Instructor: Carey Williamson Office: ICT Class.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture r Transport-layer services r Multiplexing and demultiplexing r Connectionless.
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer3-1 Data Communication and Networks Lecture 5  Transport Protocols: Multiplexing and Reliable Data Transfer October 7, 2004.
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 
CSCI 3335: C OMPUTER N ETWORKS C HAPTER 3 T RANSPORT L AYER Vamsi Paruchuri University of Central Arkansas Some.
Transport Layer 3-1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer 3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m sockets m reliable data transfer m.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
15-1 Last time □ Reliable Data Transfer ♦ Provide rdt over unreliable network layer ♦ FSM model ♦ rdt 1.0: rdt over reliable channels ♦ rdt 2.0: rdt over.
Transport Layer 3-1 From Computer Networking: A Top Down Approach Featuring the Internet by Jim Kurose, Keith Ross Addison-Wesley, A note on the use of.
rdt2.2: a NAK-free protocol
Part 3: Transport Layer: Reliable Data Transfer CSE 3461/5461 Reading: Section 3.4, Kurose and Ross 1.
Chapter 3, slide: 1 CS 372 – introduction to computer networks* Thursday July 8 Announcements: r Lab 3 is posted and due is Monday July 19. r Midterm is.
Transport Layer3-1 rdt2.1: sender, handles garbled ACK/NAKs Wait for call 0 from above sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_send(data)
Transport Layer 3-1 Chapter 3 outline 3.4 Principles of reliable data transfer.
September 24 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
1 John Magee 10 February 2014 CS 280: Transport Layer: Reliable Data Transfer Most slides adapted from Kurose and Ross, Computer Networking 6/e Source.
Introduction 1-1 Lecture 6 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All.
Transport Layer Computer Networks Computer Networks Term A15.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer Our goals:
9: Pipelined Protocols and RTT Transport Layer 3-1 Slides adapted from: J.F Kurose and K.W. Ross,
Important r Midterm will be on m FRIDAY, Feb. 12th 1.
Introduction 1 Lecture 11 Transport Layer (Reliable Data Transfer) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
1 COMP 431 Internet Services & Protocols The Transport Layer Pipelined Transport Protocols Jasleen Kaur March 29, 2016.
Performance of rdt3.0 rdt3.0 works, but performance stinks
Chapter 3 Transport Layer
Chapter 3 outline 3.1 transport-layer services
Last time Reliable Data Transfer
rdt2.2: a NAK-free protocol
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
rdt2.2: a NAK-free protocol
rdt2.2: a NAK-free protocol
rdt2.2: a NAK-free protocol
rdt2.2: a NAK-free protocol
Chapter 3 outline 3.1 transport-layer services
Chapter 3 Transport Layer
9: Pipelined Protocols and RTT
Chapter 3 Transport Layer
rdt2.0: FSM specification
Lecture 5 – Chapter 3 CIS 5617, Spring2019 Anduo Wang
rdt2.2: a NAK-free protocol
Presentation transcript:

Transport Layer 4 Slides from Kurose and Ross CS 471/571 Transport Layer 4 Slides from Kurose and Ross

rdt3.0: stop-and-wait operation sender receiver first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R first packet bit arrives RTT last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R Transport Layer

Pipelined protocols pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver two generic forms of pipelined protocols: go-Back-N, selective repeat Transport Layer

Pipelining: increased utilization sender receiver first packet bit transmitted, t = 0 last bit transmitted, t = L / R first packet bit arrives RTT last packet bit arrives, send ACK last bit of 2nd packet arrives, send ACK last bit of 3rd packet arrives, send ACK ACK arrives, send next packet, t = RTT + L / R 3-packet pipelining increases utilization by a factor of 3! Transport Layer

Pipelined protocols: overview Go-back-N: sender can have up to N unacked packets in pipeline receiver only sends cumulative ack doesn’t ack packet if there’s a gap sender has timer for oldest unacked packet when timer expires, retransmit all unacked packets Selective Repeat: sender can have up to N unack’ed packets in pipeline rcvr sends individual ack for each packet sender maintains timer for each unacked packet when timer expires, retransmit only that unacked packet Transport Layer

Go-Back-N: sender k-bit seq # in pkt header “window” of up to N, consecutive unack’ed pkts allowed ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK” may receive duplicate ACKs (see receiver) timer for oldest in-flight pkt timeout(n): retransmit packet n and all higher seq # pkts in window Transport Layer

GBN: sender extended FSM rdt_send(data) if (nextseqnum < base+N) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ } else refuse_data(data) L base=1 nextseqnum=1 timeout Wait start_timer udt_send(sndpkt[base]) udt_send(sndpkt[base+1]) … udt_send(sndpkt[nextseqnum-1]) rdt_rcv(rcvpkt) && corrupt(rcvpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) base = getacknum(rcvpkt)+1 If (base == nextseqnum) stop_timer else start_timer Transport Layer

GBN: receiver extended FSM default udt_send(sndpkt) rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum) L Wait expectedseqnum=1 sndpkt = make_pkt(expectedseqnum,ACK,chksum) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(expectedseqnum,ACK,chksum) udt_send(sndpkt) expectedseqnum++ ACK-only: always send ACK for correctly-received pkt with highest in-order seq # may generate duplicate ACKs need only remember expectedseqnum out-of-order pkt: discard (don’t buffer): no receiver buffering! re-ACK pkt with highest in-order seq # Transport Layer

GBN in action sender receiver send pkt0 send pkt1 send pkt2 send pkt3 sender window (N=4) receiver 0 1 2 3 4 5 6 7 8 send pkt0 send pkt1 send pkt2 send pkt3 (wait) 0 1 2 3 4 5 6 7 8 receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, discard, (re)send ack1 0 1 2 3 4 5 6 7 8 X loss 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 rcv ack0, send pkt4 rcv ack1, send pkt5 0 1 2 3 4 5 6 7 8 receive pkt4, discard, (re)send ack1 ignore duplicate ACK receive pkt5, discard, (re)send ack1 pkt 2 timeout 0 1 2 3 4 5 6 7 8 send pkt2 send pkt3 send pkt4 send pkt5 0 1 2 3 4 5 6 7 8 rcv pkt2, deliver, send ack2 rcv pkt3, deliver, send ack3 rcv pkt4, deliver, send ack4 rcv pkt5, deliver, send ack5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 Transport Layer

Selective repeat receiver individually acknowledges all correctly received pkts buffers pkts, as needed, for eventual in-order delivery to upper layer sender only resends pkts for which ACK not received sender timer for each unACKed pkt sender window N consecutive seq #’s limits seq #s of sent, unACKed pkts Transport Layer

Selective repeat: sender, receiver windows Transport Layer

Selective repeat receiver sender data from above: if next available seq # in window, send pkt timeout(n): resend pkt n, restart timer ACK(n) in [sendbase,sendbase+N]: mark pkt n as received if n smallest unACKed pkt, advance window base to next unACKed seq # pkt n in [rcvbase, rcvbase+N-1] send ACK(n) out-of-order: buffer in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-N,rcvbase-1] ACK(n) otherwise: ignore Transport Layer

Selective repeat in action sender sender window (N=4) receiver 0 1 2 3 4 5 6 7 8 send pkt0 send pkt1 send pkt2 send pkt3 (wait) 0 1 2 3 4 5 6 7 8 receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, buffer, send ack3 0 1 2 3 4 5 6 7 8 X loss 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 rcv ack0, send pkt4 rcv ack1, send pkt5 0 1 2 3 4 5 6 7 8 receive pkt4, buffer, send ack4 record ack3 arrived receive pkt5, buffer, send ack5 pkt 2 timeout 0 1 2 3 4 5 6 7 8 send pkt2 0 1 2 3 4 5 6 7 8 record ack4 arrived rcv pkt2; deliver pkt2, pkt3, pkt4, pkt5; send ack2 0 1 2 3 4 5 6 7 8 record ack4 arrived 0 1 2 3 4 5 6 7 8 Q: what happens when ack2 arrives? Transport Layer

example: seq #’s: 0, 1, 2, 3 window size=3 sender window (after receipt) receiver window (after receipt) 0 1 2 3 0 1 2 pkt0 pkt1 pkt2 X will accept packet with seq number 0 pkt3 (a) no problem example: seq #’s: 0, 1, 2, 3 window size=3 receiver sees no difference in two scenarios! duplicate data accepted as new in (b) Q: what relationship between seq # size and window size to avoid problem in (b)? receiver can’t see sender side. receiver behavior identical in both cases! something’s (very) wrong! 0 1 2 3 0 1 2 pkt0 pkt1 pkt2 timeout retransmit pkt0 X will accept packet with seq number 0 (b) oops! Transport Layer