Intrinsic Hall Effects of Electrons and Photons – Geometrical Phenomena in Linear Response Theory Masaru Onoda (CERC-AIST) The 21 st Century COE International.

Slides:



Advertisements
Similar presentations
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Advertisements

Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Angular Momenta, Geometric Phases, and Spin-Orbit Interactions of Light and Electron Waves Konstantin Y. Bliokh Advanced Science Institute, RIKEN, Wako-shi,
New developments in the AHE: New developments in the AHE: phenomenological regime, unified linear theories, and a new member of the spintronic Hall family.
JAIRO SINOVA Research fueled by: New Horizons in Condensed Matter Physics Aspen Center for Physics February 4 th 2008 Theory challenges of semiconducting.
Geometry and the intrinsic Anomalous Hall and Nernst effects
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Berry Phase Phenomena Optical Hall effect and Ferroelectricity as quantum charge pumping Naoto Nagaosa CREST, Dept. Applied Physics, The University of.
Wavepacket dynamics for Massive Dirac electron
The quantum AHE and the SHE The persistent spin helix
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
Effective Topological Field Theories in Condensed Matter Physics
Z2 Structure of the Quantum Spin Hall Effect
Heattronics? Thermomagnotronics? Nanospinheat ? Calefactronics? Fierytronics? Coolspintronics? Thermospintronics? ? What I learned in kinder garden: Fire.
Spin transport in spin-orbit coupled bands
Hiroyuki Inoue Electric manipulation of spin relaxation in a film using spin-Hall effect K. Ando et al (PRL in press)
JAIRO SINOVA Research fueled by: NERC ICNM 2007, Istanbul, Turkey July 25 th 2007 Anomalous and Spin-Hall effects in mesoscopic systems.
Optical study of Spintronics in III-V semiconductors
Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime Workshop on Spintronics and Low Dimensional Magnetism June.
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
Majorana Fermions and Topological Insulators
Research fueled by: MRS Spring Meeting San Francisco April 28th 2011 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Topological thermoelectrics.
Berry phase effects on Electrons
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Topological Currents in Solids - Multi-band Effect and Band Crossings - Naoto Nagaosa 永長 直人 Department of Applied Physics The University of Tokyo Dec.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
The Hall Effects Richard Beck 141A Hall Effect Discovery The physics behind it Applications Personal experiments 2Richard Beck - Physics 141A, 2013.
Dissipationless quantum spin current at room temperature Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University.
Topological Aspects of the Spin Hall Effect Yong-Shi Wu Dept. of Physics, University of Utah Collaborators: Xiao-Liang Qi and Shou-Cheng Zhang (XXIII International.
Frequency dependence of the anomalous Hall effect: possible transition from extrinsic to intrinsic behavior John Cerne, University at Buffalo, SUNY, DMR.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Topology and solid state physics
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
Geometric Spin Hall Effect of Light Andrea Aiello, Norbert Lindlein, Christoph Marquardt, Gerd Leuchs MPL Olomouc, June 24, 2009.
Jung Hoon Han (SKKU, Korea) Topological Numbers and Their Physical Manifestations.
Nripen Dhar p Outlines of Presentation Discovery Principles Importance Existing measurement system Applications New Discoveries 2.
Berry phase in solid state physics
Berry Phase Effects on Electronic Properties
Berry phase driven Hall effects
The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor.
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Photonic Topological Insulators
German Physical Society Meeting TU Berlin March 26 th, 2012 Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR UCLA A. Kovalev.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Example: Magnetic field control of the conducting and orbital phases of layered ruthenates, J. Karpus et al., Phys. Rev. Lett. 93, (2004)  Used.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
German Physical Society Meeting March 26 th, 2012 Berlin, Germany Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR UCLA.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Quantum Hall transition in graphene with correlated bond disorder T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University.
University of Washington
Dirac’s inspiration in the search for topological insulators
K. Y. Bliokh, A. Niv, V. Kleiner, E. Hasman Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel Nonlinear.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Topological Insulators
Weyl metal: What’s new beyond Landau’s Fermi liquid theory?
The Hall States and Geometric Phase
Topological phases driven by skyrmions crystals
Photo-induced topological phase transitions in ultracold fermions
Introduction to topological insulators and STM/S on TIs
Qian Niu 牛谦 University of Texas at Austin 北京大学
Topological Insulators
Gauge structure and effective dynamics in semiconductor energy bands
Tunneling between helical edge states through extended contacts
Correlations of Electrons in Magnetic Fields
6NHMFL, Florida State University, Tallahassee, Florida 32310, USA
Presentation transcript:

Intrinsic Hall Effects of Electrons and Photons – Geometrical Phenomena in Linear Response Theory Masaru Onoda (CERC-AIST) The 21 st Century COE International Symposium ~07 Linear Response Theory in Commemoration of its 50 th Anniversary

Collaborators –S. Murakami (TIT) N. Nagaosa (Univ. of Tokyo) Special thanks to –Y. Tokura (Univ. of Tokyo) H. Aoki (Univ. of Tokyo)

Outline Motivation Intrinsic mechanism of Hall effects Semiclassical Interpretation Optical Hall Effect Summary

Mission of the theory team of CERC New functionalities based on geometrical phase of electron systems Anomalous Hall effect (AHE)  Quantum AHE Spin Hall effect (SHE)  Quantum SHE Optical Hall effect (OHE) AHE  high-sensitive Hall element QAHE  resistance standard without external magnetic field Edge states of QSHE  spin filter, control of nuclear spin OHE + tunable photonic crystal (PX)  optical switch Beam with internal rotation in PX  optical mixer without fin

Anomalous Hall Effect Current M M B Quantization Our contribution not presented today Disorder induced quantization of AHE : M. Onoda and N. Nagaosa, PRL 90, (2003) V

Spin Hall effect Current Quantization Our contributions not presented today Real space simulation: M. Onoda and N. Nagaosa, PRB 72, (R) (2005);PRL 95, (2005) Disorder effect: M. Onoda, Y.Avishai, N. Nagaosa, PRL 98, (2007)

Optical Hall effect

Mission of the theory team of CERC New functionalities based on geometrical phase of electron systems Anomalous Hall effect (AHE)  Quantum AHE Spin Hall effect (SHE)  Quantum SHE Optical Hall effect (OHE) AHE  high-sensitive Hall element QAHE  resistance standard without external magnetic field Edge states of QSHE  spin filter, control of nuclear spin OHE + tunable photonic crystal (PX)  optical switch Beam with internal rotation in PX  optical mixer without fin

Skew scattering Side jump L.Berger, PRB 2, 4559 (1970) J.Smith, Physica 24, 39 (1958) Conventional mechanisms of AHE and SHE  xy in Kubo formalism + diagrammatic technique Spin dependent scattering M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971) J. E. Hirsch, PRL 83, 1834 (1999) S. Zhang, PRL 85, 393 (2000) Extrinsic spin Hall effect

B HH B HH Conventional HE  Hall element Semiconductor with high resistivity and high mobility AHE  high sensitive Hall element (patent No ) Material search and design are needed for optimization.  Research on intrinsic mechanism

Intrinsic Mechanism Quantum Hall effect K. v. Klitzing, G. Dorda, M. Pepper, PRL 45, 494 (1980) TKNN, PRL 49, 405 (1982) H. Aoki and T. Ando, PRL 57, 3039 (1987) Intrinsic anomalous Hall effect due to chiral spin order K. Ohgushi, S. Murakami, N. Ngaosa, PRB 62, R6065 (2000) Y. Taguchi et al., Science 291, 2573 (2001) Intrinsic spin Hall effect S. Murakami, N. Nagaosa., S.-C. Zhang, Science 301, 1348 (2003) J. Sinova et al., Phys. Rev. Lett. 92, (2004) Multi-band effect R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954) J. M. Luttinger, Phys. Rev. 112, 739 (1958)  1 2 3

Berry curvature ~ magnetic field in k-space EFEF kxkx kyky Geometrical aspect only in special situations?

t 2g model d xy d yz d zx pxpx pypy M.Onoda and N. Nagaosa, JPSJ 71, 19 (2002)

Nearly degenerate (resonant) point  Large  Topological/Geometrical and Resonant aspects Small change of a parameter, e.g., M z  Drastic change of   Drastic change of  xy Topological transition in QHE J. E. Avron, R. Seiler, B. Simon, PRL 51, 51 (1983) B. Simon, PRL 51, 2167 (1983) Y. Hatsugai and M. Kohmoto, PRB 42, 8282 (1990) M. Oshikawa, PRB 50, (1994)

Berry curvature of a t 2g band Z. Fang et al., Science 302, 92 (2003) SrRuO 3, Sr 0.8 Ca 0.2 RuO 3 Sr 1-x Ca x RuO 3 R. Mathieu et al., PRL 93, (2004)

x: electric field y: spin current z: spin direction S. Murakami, N. Nagaosa., S.-C. Zhang, Science 301, 1348 (2003) Intrinsic spin Hall effect in p-type GaAs GaAs

momentum spin J. Sinova et al., PRL 92, (2004) Intrinsic spin Hall effect in n-type GaAs

Y. K. Kato et al., Science 306,1910 (2004) Spin Hall Effect in n-type GaAs J. Wunderlich et al., PRL 94, (2005) Spin Hall Effect in p-type GaAs Extrinsic (Conventional) Intrinsic

S. Murakami, PRL 97, (2006) Bi bilayer B. A. Bernevig, Science 314, 1757 (2006) Graphene C. L. Kane and E. J. Mele, PRL 95, (2005) Candidates of QSHE CdTe/HgTe/CdTe QW

M. König, et al., Science 318, 766 (2007) HgTe/Hg 0.3 Cd 0.7 Te QW

Anomalous velocity  QHE Effective Lorentz force Spin-dependent  Intrinsic spin Hall effect M.-C. Chang and Q. Niu, PRL 75, 1348 (1995). Semiclassical Interpretation Equations of motion of a wave-packet in magnetic flux commensurate with lattice Magnetic Bloch bands

M.-C. Chang, Q. Niu, PRB 53, 7010 (1996) 1 st level 2 nd level 3 rd level Berry curvatureInternal rotation

EE

Multi-band effect  Projection due to  nk Resonant enhancement Internal Rotation Spin-orbit coupling in a broad sense Wave-particle duality

Wave optics  Eikonal  Fermat’s principle  Geometrical optics Quantum mechanics  Path integral  least-action principle  Classical mechanics Semiclassical interpretation

Equations of motion of optical packet Anomalous velocity Neglecting the spin, i.e., polarization →Conventional equation of geometrical optics M. Onoda, S. Murakami, N. Nagaosa, PRL 93, (2004)

Solid (transmission) and broken (reflection) lines: conservation of angular momentum per photon ● ■ : Maxwell’s equations Linear polarization Imbert-Fedorov shift Elliptical polarization M. Onoda, S. Murakami, N. Nagaosa, PRE 74, (2006)

Internal Angular momenta of light Linear S=0Right circular S=1Left circular S=-1 Spin angular momentum Orbital angular momentum L=0L=1L=2L=3

Transverse shift of Laguerre-Gaussian beam Experiment, H. Okuda, H. Sasada, Opt. Exp. 14, 8393 (2006) Experiment, R. Dasgupta, P. K. Gupta, Opt. Comm. 257, 91 (2006) Theory, V. G. Fedoseyev, Opt. Comm. 193, 9 (2001)

Optical Hall effect in photonic crystals Multi-band  Resonant enhancement

Berry curvature in PX

Trajectory of optical wave-packet in PX Overhead view of the 2D PX. The crystal structure is not shown.

Berry curvature and internal rotation (TE mode)

A. T. O’Neil et al., PRL 88, (2002) Applications of optical torque (Extensions of the optical tweezer technology) H. Ukita, 精密工学会誌 72, 977 (2006) (in Japanese) 3  x 1.5  calcite  dielectric

Beam with large angular momentum by photonic crystal  optical mixer without fin

Summary Intrinsic mechanism of Hall effects (IHE) in electron systems –Suitable for material search and design –Multi-band effect –Geometrical/topological –Resonant enhancement –Internal rotation + spin-orbit interaction in a broad sense Optical Hall effect (OHE) –Counterpart of electronic IHE in optical systems –Imbert-Fedorov shift as a simple example of OHE –Resonant enhancement of OHE in photonic crystals –Optical state with large angular momentum in PX