How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.

Slides:



Advertisements
Similar presentations
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
Advertisements

A proposal for the function of canonical microcircuits André Bastos July 5 th, 2012 Free Energy Workshop.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Bayesian models for fMRI data
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free Energy Workshop - 28th of October: From the free energy principle to experimental neuroscience, and back The Bayesian brain, surprise and free-energy.
The free-energy principle: a rough guide to the brain? Karl Friston
Summarized by Eun Seok Lee BioIntelligence Lab 20 Sep, 2012
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
CDB Exploring Science and Society Seminar Thursday 19 November 2009 at 5.30pm Host: Prof Giorgio Gabella The Bayesian brain, surprise and free-energy.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference Karl Friston Abstract How much about our interaction with – and experience of – our world can be deduced from basic principles?
Abstract We start with a statistical formulation of Helmholtz’s ideas about neural energy to furnish a model of perceptual inference and learning that.
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany A hierarchy of time-scales and the brain Stefan Kiebel.
The free-energy principle: a rough guide to the brain? K Friston Summarized by Joon Shik Kim (Thu) Computational Models of Intelligence.
ABSTRACT: My treatment of critical gaps in models of probabilistic inference will focus on the potential of unified theories to “close the gaps” between.
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
Abstract This talk summarizes recent attempts to integrate action and perception within a single optimization framework. We start with a statistical formulation.
Dynamic causal modelling of electromagnetic responses Karl Friston - Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL In recent years,
Abstract This talk summarizes our recent attempts to integrate action and perception within a single optimization framework. We start with a statistical.
Abstract This talk will present a general approach (DCM) to the identification of dynamic input-state-output systems such as the network of equivalent.
Recent advances in the theory of brain function
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract We offer a formal treatment of choice behaviour based on the premise that agents minimise the expected free energy of future outcomes. Crucially,
Abstract Predictive coding models and the free-energy principle, suggests that cortical activity in sensory brain areas reflects the precision of prediction.
Abstract: This overview of the free energy principle offers an account of embodied exchange with the world that associates conscious operations with actively.
Abstract This presentation questions the need for reinforcement learning and related paradigms from machine-learning, when trying to optimise the behavior.
Zangwill Club Seminar - Lent Term The Bayesian brain, surprise and free-energy Karl Friston, Wellcome Centre for Neuroimaging, UCL Abstract Value-learning.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference
Dynamic Causal Modelling for EEG and MEG
Deans Lecture Reception PM, Lecture 6-7, Lecture theatre S1, Clayton Campus, Monash University). Models, maps and modalities in brain imaging Karl.
Reasons to be careful about reward A flow (policy) cannot be specified with a scalar function of states: the fundamental theorem of vector calculus – aka.
Abstract We will use schizophrenia as a case study of computational psychiatry. We first review the basic phenomenology and pathophysiological theories.
Brain modes and network discovery Karl Friston The past decade has seen tremendous advances in characterising functional integration in the brain. Much.
Abstract This tutorial is about the inversion of dynamic input-state-output systems. Identification of the systems parameters proceeds in a Bayesian framework.
Free-energy and active inference
Abstract We suggested recently that attention can be understood as inferring the level of uncertainty or precision during hierarchical perception. In.
Abstract This presentation will look at action, perception and cognition as emergent phenomena under a unifying perspective: This Helmholtzian perspective.
Workshop on Mathematical Models of Cognitive Architectures December 5-9, 2011 CIRM, Marseille Workshop on Mathematical Models of Cognitive Architectures.
Dynamic Causal Modelling (DCM) Marta I. Garrido Thanks to: Karl J. Friston, Klaas E. Stephan, Andre C. Marreiros, Stefan J. Kiebel,
Abstract If we assume that neuronal activity encodes a probabilistic representation of the world that optimizes free- energy in a Bayesian fashion, then.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
Workshop on: The Free Energy Principle (Presented by the Wellcome Trust Centre for Neuroimaging) July 5 (Thursday) - 6 (Friday) 2012 Workshop on: The.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to.
DCM for evoked responses Ryszard Auksztulewicz SPM for M/EEG course, 2015.
Tutorial Session: The Bayesian brain, surprise and free-energy Value-learning and perceptual learning have been an important focus over the past decade,
Dynamic Causal Modeling of Endogenous Fluctuations
Free energy and active inference
Nicolas Alzetta CoNGA: Cognition and Neuroscience Group of Antwerp
Free energy and life as we know it
Free energy, the brain and life as we know it
Wellcome Trust Centre for Neuroimaging University College London
Canonical Microcircuits for Predictive Coding
DCM for evoked responses
The free-energy principle: a rough guide to the brain? K Friston
Predictive computational modelling in the brain (and other animals)
Dynamic Causal Modelling for M/EEG
CRIS Workshop: Computational Neuroscience and Bayesian Modelling
Dynamic Causal Modelling for evoked responses
Presentation transcript:

How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand the self-organised behaviour of embodied agents – like ourselves – as satisfying basic imperatives for sustained exchanges with our world. In brief, one simple driving force appears to explain nearly every aspect of our behaviour and experience. This driving force is the minimisation of surprise or prediction error. In the context of perception, this corresponds to (Bayes-optimal) predictive coding that suppresses exteroceptive prediction errors. In the context of action, simple reflexes can be seen as suppressing proprioceptive prediction errors. We will look at some of the phenomena that emerge from this formulation, such as hierarchical message passing in the brain and the perceptual inference that ensues. I hope to illustrate these points using simple simulations of perception, action and the perception of action. Free energy and active inference Karl Friston, University College London

Overview The anatomy of inference predictive coding hierarchical models canonical microcircuits Action and perception perceptual synthesis and violations action and its observation dopamine and perseveration

“Objects are always imagined as being present in the field of vision as would have to be there in order to produce the same impression on the nervous mechanism” - von Helmholtz Thomas Bayes Geoffrey Hinton Richard Feynman The Helmholtz machine and the Bayesian brain Richard Gregory Hermann von Helmholtz

“Objects are always imagined as being present in the field of vision as would have to be there in order to produce the same impression on the nervous mechanism” - von Helmholtz Richard Gregory Hermann von Helmholtz sensory impressions… Plato: The Republic (514a-520a)

Bayesian filtering and predictive coding changes in expectations are predicted changes and (prediction error) corrections prediction error

Minimizing prediction error Change sensations sensations – predictions Prediction error Change predictions Action Perception

Backward (nonlinear) lateral Neuronal hierarchies and hierarchical models

A simple hierarchy Generative models whatwhere Sensory fluctuations

Generative model Model inversion (inference) A simple hierarchy Descending predictions Descending predictions Ascending prediction errors From models to perception Expectations: Predictions: Prediction errors: Predictive coding

Haeusler and Maass: Cereb. Cortex 2006;17: Bastos et al: Neuron 2012; 76: Canonical microcircuits for predictive coding

Thalamus Area X Higher vocal centre Hypoglossal Nucleus Prediction error (superficial pyramidal cells) Expectations (deep pyramidal cells) Perception Action David Mumford Predictive coding and active inference

Prediction error can be reduced by changing predictions (perception) Prediction error can be reduced by changing sensations (action) Hierarchical predictive coding is a neurobiological plausible scheme for (approximate) Bayesian inference about the causes of sensations – by minimising prediction error Predictive coding requires the dual encoding of expectations and errors, with reciprocal (neuronal) message passing Much of the known neuroanatomy and neurophysiology of cortical architectures is consistent with the requisite message passing

Overview The anatomy of inference predictive coding hierarchical models canonical microcircuits Action and perception perceptual synthesis and violations action and its observation dopamine and perseveration

Perceptual inference and sequences of sequences SyrinxNeuronal hierarchy Time (sec) Frequency (KHz) sonogram External states Internal states Sensory states Prediction error

omission and violation of predictions Stimulus but no percept Percept but no stimulus Frequency (Hz) stimulus (sonogram) Time (sec) Frequency (Hz) percept peristimulus time (ms) LFP (micro-volts) ERP (prediction error) without last syllable Time (sec) percept peristimulus time (ms) LFP (micro-volts) with omission

Overview The anatomy of inference predictive coding hierarchical models canonical microcircuits Action and perception perceptual synthesis and violations action and its observation dopamine and perseveration

proprioceptive input Action with point attractors visual input Descending proprioceptive predictions Descending proprioceptive predictions

action position (x) position (y) Action with heteroclinic orbits Descending proprioceptive predictions Descending proprioceptive predictions observation position (x)

Overview The anatomy of inference predictive coding hierarchical models canonical microcircuits Action and perception perceptual synthesis and violations action and its observation dopamine and perseveration

SN/VTA Mesocortical DA projections Nigrostriatal DA projections Superior colliculus Mesorhombencephalic pathway Parietal cortex Motor cortex Premotor cortex Prefrontal cortex Striatum Motoneurones Dopamine and precision

SN/VTA Motor cortex Premotor cortex Superior colliculus SN/VTA Motor cortex Premotor cortex Superior colliculus Dopamine and perseveration perseverationconfusion

“Each movement we make by which we alter the appearance of objects should be thought of as an experiment designed to test whether we have understood correctly the invariant relations of the phenomena before us, that is, their existence in definite spatial relations.” ‘The Facts of Perception’(1878) in The Selected Writings of Hermann von Helmholtz, Ed. R. Karl, Middletown: Wesleyan University Press, 1971 p. 384 Hermann von Helmholtz

Thank you And thanks to collaborators: Rick Adams Andre Bastos Sven Bestmann Harriet Brown Jean Daunizeau Mark Edwards Xiaosi Gu Lee Harrison Stefan Kiebel James Kilner Jérémie Mattout Rosalyn Moran Will Penny Lisa Quattrocki Knight Klaas Stephan And colleagues: Andy Clark Peter Dayan Jörn Diedrichsen Paul Fletcher Pascal Fries Geoffrey Hinton Allan Hobson James Hopkins Jakob Hohwy Henry Kennedy Paul Verschure Florentin Wörgötter And many others

Perception and Action: The optimisation of neuronal and neuromuscular activity to suppress prediction errors (or free- energy) based on generative models of sensory data. Learning and attention: The optimisation of synaptic gain and efficacy over seconds to hours, to encode the precisions of prediction errors and causal structure in the sensorium. This entails suppression of free-energy over time. Neurodevelopment: Model optimisation through activity- dependent pruning and maintenance of neuronal connections that are specified epigenetically Evolution: Optimisation of the average free-energy (free-fitness) over time and individuals of a given class (e.g., conspecifics) by selective pressure on the epigenetic specification of their generative models. Time-scale Free-energy minimisation leading to…

Searching to test hypotheses – life as an efficient experiment Free energy principleminimise uncertainty