Physics for Scientists and Engineers, 6e

Slides:



Advertisements
Similar presentations
A ladybug sits at the outer edge of a merry-go-round, and a gentleman bug sits halfway between her and the axis of rotation. The merry-go-round makes a.
Advertisements

Review Problems From Chapter 10&11. 1) At t=0, a disk has an angular velocity of 360 rev/min, and constant angular acceleration of rad/s**2. How.
(10-6).
Lecture 15 Rotational Dynamics.
Angular Momentum The vector angular momentum of the point mass m about the point P is given by: The position vector of the mass m relative to the point.
ConcepTest Clicker Questions College Physics, 7th Edition
©1997 by Eric Mazur Published by Pearson Prentice Hall
2.
Cutnell/Johnson Physics 7th edition
Physics 106: Mechanics Lecture 04
Rotational Motion Chapter Opener. Caption: You too can experience rapid rotation—if your stomach can take the high angular velocity and centripetal acceleration.
Chapter 9 Rotational Dynamics. 9.5 Rotational Work and Energy.
Physics Montwood High School R. Casao
Copyright © 2012 Pearson Education Inc. Rotational Kinematics, Inertia Physics 7C lecture 11 Tuesday November 5, 8:00 AM – 9:20 AM Engineering Hall 1200.
Rotation of a Rigid Object about a Fixed Axis
Conservation of Angular Momentum 8.01 W10D2 Young and Freedman:
Physics 111: Mechanics Lecture 10 Dale Gary NJIT Physics Department.
 Angular speed, acceleration  Rotational kinematics  Relation between rotational and translational quantities  Rotational kinetic energy  Torque 
Rotational Kinematics
CHAPTER-10 Rotation.
Rotational Kinematics
Chapter 10 Rotational Motion
CT1:A ladybug sits at the outer edge of a merry-go-round, and a gentleman bug sits halfway between her and the axis of rotation. The merry-go-round makes.
Physics 106: Mechanics Lecture 06 Wenda Cao NJIT Physics Department.
Chapter 10 Rotation Key contents
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Classical Mechanics Review 4: Units 1-19
Rotational Motion Chap NEW CONCEPT ‘Rotational force’: Torque Torque is the “twisting force” that causes rotational motion. It is equal to the.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Angular Momentum of a Particle
Chapter 11 Angular Momentum.
Rigid Body: Rotational and Translational Motion; Rolling without Slipping 8.01 W11D1 Today’s Reading Assignment Young and Freedman: 10.3.
Torque & Rotational Inertia Lecturer: Professor Stephen T. Thornton.
Conservation of Angular Momentum 8.01 W10D2
ROTATIONAL MOTION AND EQUILIBRIUM
Chapter 10 - Rotation Definitions: –Angular Displacement –Angular Speed and Velocity –Angular Acceleration –Relation to linear quantities Rolling Motion.
Torque Chap 8 Units: m N 2.
Chapter 8 Rotational Motion.
Physics 111 Practice Problem Statements 09 Rotation, Moment of Inertia SJ 8th Ed.: Chap 10.1 – 10.5 Contents 11-4, 11-7, 11-8, 11-10, 11-17*, 11-22, 11-24,
Two-Dimensional Rotational Kinematics 8.01 W09D1 Young and Freedman: 1.10 (Vector Products) , 10.5.
10/10/2012PHY 113 A Fall Lecture 171 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 17: Chapter 10 – rotational motion 1.Angular.
Rotational motion, Angular displacement, angular velocity, angular acceleration Rotational energy Moment of Inertia Torque Chapter 10:Rotation of a rigid.
Rotation of a Rigid Object about a Fixed Axis
Wednesday, Apr. 15, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #19 Wednesday, Apr. 15, 2009 Dr. Jaehoon Yu Relationship.
Rotational Motion. 6-1 Angular Position, Velocity, & Acceleration.
Rotational and Translational Motion Dynamics 8
ConcepTest 7.1aBonnie and Klyde I Bonnie Klyde Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim.
AP Physics 1 Review Chs 8&9 Rotational Kinematics and Dynamics
Physics 207: Lecture 16, Pg 1 Lecture 16Goals: Chapter 12 Chapter 12  Extend the particle model to rigid-bodies  Understand the equilibrium of an extended.
4.1 Rotational kinematics 4.2 Moment of inertia 4.3 Parallel axis theorem 4.4 Angular momentum and rotational energy CHAPTER 4: ROTATIONAL MOTION.
Circular Motion and Other Applications of Newton’s Laws
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
ConcepTest 10.1aBonnie and Klyde I Bonnie Klyde Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim.
ConcepTest 8.1a Bonnie and Klyde I
Rotational Motion – Dynamics AP Physics. Rotational and Translational Equalities Rotational Objects roll Inertia TORQUE Angular Acceleration Rotational.
Short Version : 10. Rotational Motion Angular Velocity & Acceleration (Instantaneous) angular velocity Average angular velocity  = angular displacement.
ConcepTest 8.1aBonnie and Klyde I Bonnie Klyde Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim.
Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Spring, 2016 © 2014 Pearson Education, Inc.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Chapter 8: Torque. Recall: Angular Kinematics ω = ω_0 + α t ω^2 = (ω_0)^2 + 2 α θ θ = ω_0 t + (1/2) α t^2.
Rotational Dynamics The Action of Forces and Torques on Rigid Objects
Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina © 2014 Pearson Education, Inc.
Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina © 2014 Pearson Education, Inc.
Rigid Body: Rotational and Translational Motion; Rolling without Slipping 8.01 W11D1.
A hoop and a solid disk both have the same radius and mass and negligible thickness. Assume that they are both rotating with the same constant angular.
Rotational Dynamics Chapter 9.
Common Exam 2 results Graded out of 16 High score for my sections – 18
Rigid Body: Rotational and Translational Motion; Rolling without Slipping 8.01 W11D1 Today’s Reading Assignment Young and Freedman: 10.3.
Rigid Body: Rotational and Translational Motion; Rolling without Slipping 8.01 W11D1 Today’s Reading Assignment Young and Freedman:
Presentation transcript:

Physics for Scientists and Engineers, 6e Chapter 10 – Rotation of a Rigid Object about a Fixed Axis

A rigid object is rotating in a counterclockwise sense around a fixed axis. Each of the following pairs of quantities represents an initial angular position and a final angular position of the rigid object. Which of the sets can only occur if the rigid object rotates through more than 180°? 3 rad, 6 rad -1 rad, 1 rad 1 rad, 5 rad 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

For a rotation of more than 180°, the angular displacement must be larger than π = 3.14 rad. The angular displacements in the three choices are (1) 6 rad – 3 rad = 3 rad; (2) 1 rad – (-1) rad = 2 rad; (3) 5 rad – 1 rad = 4 rad.

Suppose that the change in angular position for each of the pairs of values in question 1 occurs in 1 s. Which choice represents the lowest average angular speed? 3 rad, 6 rad -1 rad, 1 rad 1 rad, 5 rad 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Because all angular displacements occur in the same time interval, the displacement with the lowest value will be associated with the lowest average angular speed.

clockwise and increasing clockwise and decreasing A rigid object is rotating with an angular speed ω < 0. The angular velocity vector ω and the angular acceleration vector α are antiparallel. The angular speed of the rigid object is clockwise and increasing clockwise and decreasing counterclockwise and increasing counterclockwise and decreasing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The fact that ω is negative indicates that we are dealing with an object that is rotating in the clockwise direction. We also know that when ω and α are antiparallel, ω must be decreasing – the object is slowing down. Therefore, the object is spinning more and more slowly (with less and less angular speed) in the clockwise, or negative, direction.

Consider again the pairs of angular positions for the rigid object Consider again the pairs of angular positions for the rigid object. If the object starts from rest at the initial angular position, moves counterclockwise with constant angular acceleration, and arrives at the final angular position with the same angular speed in all three cases, for which choice is the angular acceleration the highest? 3 rad, 6 rad -1 rad, 1 rad 1 rad, 5 rad 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

In Equation 10.8, both the initial and final angular speeds are the same in all three cases. As a result, the angular acceleration is inversely proportional to the angular displacement. Thus, the highest angular acceleration is associated with the lowest angular displacement.

impossible to determine Andy and Charlie are riding on a merry-go-round. Andy rides on a horse at the outer rim of the circular platform, twice as far from the center of the circular platform as Charlie, who rides on an inner horse. When the merry-go-round is rotating at a constant angular speed, Andy's angular speed is twice Charlie’s the same as Charlie’s half of Charlie’s impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The system of the platform, Andy, and Charlie is a rigid object, so all points on the rigid object have the same angular speed.

impossible to determine Consider again the merry-go-round situation. When the merry-go-round is rotating at a constant angular speed, Andy's tangential speed is twice Charlie’s the same as Charlie’s half of Charlie’s impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The tangential speed is proportional to the radial distance from the rotation axis.

the have the same rotational kinetic energy impossible to determine A section of hollow pipe and a solid cylinder have the same radius, mass, and length. They both rotate about their long central axes with the same angular speed. Which object has the higher rotational kinetic energy? the hollow pipe the solid cylinder the have the same rotational kinetic energy impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Almost all of the mass of the pipe is at the same distance from the rotation axis, so it has a larger moment of inertia than the solid cylinder.

If you are trying to loosen a stubborn screw from a piece of wood with a screwdriver and fail, you should find a screwdriver for which the handle is longer fatter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The fatter handle of the screwdriver gives you a larger moment arm and increases the torque that you can apply with a given force from your hand.

If you are trying to loosen a stubborn bolt from a piece of metal with a wrench and fail, you should find a wrench for which the handle is longer fatter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The longer handle of the wrench gives you a larger moment arm and increases the torque that you can apply with a given force from your hand.

You turn off your electric drill and find that the time interval for the rotating bit to come to rest due to frictional torque in the drill is Δt. You replace the bit with a larger one that results in a doubling of the moment of inertia of the entire rotating mechanism of the drill. When this larger bit is rotated at the same angular speed as the first and the drill is turned off, the frictional torque remains the same as that for the previous situation. The time for this second bit to come to rest is 4Δt 2Δt Δt 0.5Δt 0.25Δt impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

With twice the moment of inertia and the same frictional torque, there is half the angular acceleration. With half the angular acceleration, it will require twice as long to change the speed to zero.

A rod is attached to the shaft of a motor at the center of the rod so that the rod is perpendicular to the shaft, as in the figure below. The motor is turned on and performs work W on the rod, accelerating it to an angular speed ω. The system is brought to rest, and the rod is attached to the shaft of the motor at one end of the rod as in Figure 10.23b. The motor is turned on and performs work W on the rod. The angular speed of the rod in the second situation is 4ω 2ω ω 0.5ω 0.25ω impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

When the rod is attached at its end, it offers four times as much moment of inertia as when attached in the center (see Table 10.2). Because the rotational kinetic energy of the rod depends on the square of the angular speed, the same work will result in half of the angular speed.

both arrive at the same time impossible to determine A ball rolls without slipping down incline A, starting from rest. At the same time, a box starts from rest and slides down incline B, which is identical to incline A except that it is frictionless. Which arrives at the bottom first? the ball the box both arrive at the same time impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

All of the gravitational potential energy of the box-Earth system is transformed to kinetic energy of translation. For the ball, some of the gravitational potential energy of the ball-Earth system is transformed to rotational kinetic energy, leaving less for translational kinetic energy, so the ball moves downhill more slowly than the box does.

Both arrive at the same time impossible to determine Two solid spheres roll down an incline, starting from rest. Sphere A has twice the mass and twice the radius of sphere B. Which arrives at the bottom first? sphere A sphere B Both arrive at the same time impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

In Equation 10. 30, ICM for a sphere is 2/5 MR2 In Equation 10.30, ICM for a sphere is 2/5 MR2. Thus, MR2 will cancel and the remaining expression on the right-hand side of the equation is independent of mass and radius.

Both arrive at the same time impossible to determine Two spheres roll down an incline, starting from rest. Sphere A has the same mass and radius as sphere B, but sphere A is solid while sphere B is hollow. Which arrives at the bottom first? sphere A sphere B Both arrive at the same time impossible to determine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The moment of inertia of the hollow sphere B is larger than that of sphere A. As a result, Equation 10.30 tells us that the center of mass of sphere B will have a smaller speed, so sphere A should arrive first.