Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Synoptic TeV Telescopes Results from Milagro Plans for HAWC.

Slides:



Advertisements
Similar presentations
The MAGIC telescope and the GLAST satellite La Palma, Roque de los Muchacos (28.8° latitude ° longitude, 2225 m asl) INAUGURATION: 10/10/2003 LAT.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Latest results from ARGO-YBJ P. Camarri University of Roma “Tor Vergata” And INFN Roma Tor Vergata P. Camarri - WAPP Darjeeling, India - Dec 17-19,
Web: Contact: HAWC is a collaborative effort between institutions in the United States of America.
Proposal Submitted to NSF/DoE HEP Given the large increase in sensitivity for a moderate cost, we have decided to propose to build HAWC. A proposal was.
TeV Observations Of Diffuse Emission Probing Galactic Gamma-Ray Sources Brenda Dingus Los Alamos National Lab Milagro: A Diffuse TeV Observatory TeV Gamma-Ray.
October 20-21, 2005 “Towards the Future” Workshop Andrew Smith mini- High Altitude Water Cherenkov experiment e   145 meters 4 meters  Andrew Smith.
Gus Sinnis HAWC Review December 2007 Milagro a TeV Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Gus Sinnis Los Alamos National Laboratory EAS Arrays in the GLAST Era.
Surveying the Galactic Plane with VERITAS and GLAST Amanda Weinstein, UCLA Getting Involved with GLAST workshop May 22, 2007 UCLA.
U N C L A S S I F I E D High-Energy Astrophysics Probing the Extreme Universe Gus Sinnis P-23.
HAWC Gus Sinnis VHE Workshop UCLA October, 2005 HAWC: A Next Generation Wide-Field VHE Gamma-Ray Telescope.
The Milagro Gamma-Ray Observatory Milagro is a water Cherenkov extensive air shower (EAS) detector located near Los Alamos, NM at 2630m above sea level,
The Highest Energy Emission from Short Gamma-Ray Bursts Pablo Saz Parkinson Santa Cruz Institute for Particle Physics, UCSC SCIPP Seminar, 9 March 2007.
The Spectrum of Markarian 421 Above 100 GeV with STACEE Jennifer Carson UCLA / Stanford Linear Accelerator Center February MeV 1 GeV 10 GeV 100.
On A Large Array Of Midsized Telescopes Stephen Fegan Vladimir Vassiliev UCLA.
Gus Sinnis PRC-US Workshop, Beijing June 2006 Synoptic VHE Gamma-Ray Telescopes Gus Sinnis Los Alamos National Laboratory.
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
High Energy Astrophysics with the High Altitude Water Cherenkov Experiment John Pretz – Los Alamos National Lab International Astronomical Union Meeting.
Gus Sinnis CTA Workshop, Paris, March 2007 Synoptic TeV Telescopes: Recent Results & Future Plans Gus Sinnis Los Alamos National Laboratory.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
MiniHAWC Jordan Goodman Beijing – June 2006 Jordan Goodman University of Maryland mini- High Altitude Water Cherenkov experiment  miniHAWC.
Gus Sinnis RICAP, Rome June 2007 High Altitude Water Cherenkov Telescope  Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration.
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
Water Cherenkov Technology in Gamma-Ray Astronomy Gus Sinnis Los Alamos National Laboratory.
Erice July 2004Jordan GoodmanUniversity of Maryland Air Shower Gamma Ray Detectors Outline Air Shower Physics –Extensive Air Showers –Gamma/Hadron sep.
High Energy Particle Astrophysics PRC-US Collaboration Summary Report Gus Sinnis David Kieda Gus Sinnis Hu Hongbo Jordan Goodman Min Zha.
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
Future directions in Ground-Based Gamma-Ray Astronomy Simon Swordy - TeV Particle Astro II, UW Madison, 2006.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Detecting  -ray Sources Brenda Dingus 23 January 2006 Outline: I.Detection Techniques II.Each  -ray is an Image III.Source Detection.
Milagro Jordan Goodman NSF July 2007 The History of Milagro Jordan A. Goodman University of Maryland.
HAWC Andrew Smith - University of Maryland TeV Astrophysics II, August 28,2006 High Altitude Water Cherenkov experiment  HAWC Andrew Smith, University.
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope.
The HAWC Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration LHAASO Workshop - Beijing, China February 17, 2011.
HAWC Science  Survey of 2  sr (half the sky) up to 100 TeV energies Probe knee in cosmic ray spectrum Identify sources of Galactic cosmic rays  Extended.
1st page of proposal with 2 pictures and institution list 1.
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The Gamma-Neutrino Connection in Transparent Sources – the Observational Side Alexander Kappes University Wisconsin-Madison Workshop on Non-Thermal Hadronic.
Moriond 2003Jordan GoodmanMilagro Collaboration VHE GRBs with Milagro The Milagro Detector Why look for VHE GRBs Milagrito Result –GRB a Milagro.
Aous Abdo Ground-based Gamma-ray Astronomy: Towards the Future. Santa Fe, NM May 11–12, 2006 Detection of Tev  -rays from the Cygnus Region with Milagro.
Introduction Active galactic nuclei (AGN) are among the most interesting sources of gamma-rays. At the highest energies, blazars are the most luminous.
Detecting Air Showers on the Ground
Brenda Dingus 20 Oct 2005 Astrophysics with 2 sr and 24/7 VHE Detectors Brenda Dingus for the Milagro and HAWC collaborations.
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Jordan Goodman TeV III Venice August 2007 HAWC - A Wide-Field Gamma-Ray Telescope Jordan A. Goodman University of Maryland.
Milagro at Tibet Gus Sinnis LANL/P-23. Challenge and Opportunity Milagro will run for ~2 more years (or less) No viable candidate to replace Milagro on.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
The Large High Altitude Air Shower Observatory LHAASO.
ICRC 2011Ignacio Taboada | Georgia Tech1 Sensitivity of HAWC to Gamma Ray Bursts Ignacio Taboada Georgia Institute of Technology Aug 11, 2011 – ICRC.
The end of the electromagnetic spectrum
Latest Results from the Milagro Observatory Vlasios Vasileiou NASA Goddard Space Flight Center & University of Maryland, Baltimore County.
Gus Sinnis RICAP, Rome June 2007 The Milagro Observatory: Recent Results & Future Plans Gus Sinnis Los Alamos National Laboratory for the Milagro Collaboration.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
32 nd ICRC –Beijing – August 11-18, 2011 Silvia Vernetto IFSI-INAF Torino, ITALY On behalf of the ARGO-YBJ collaboration Observation of MGRO J with.
Downgoing Muons in the IceCube experiment: Final presentation for Phys 735, Particle, Prof. Sridhara Dasu L.Gladstone 2008 Dec 3.
On behalf of the ARGO-YBJ collaboration
Searching for VHE Gamma-Ray Bursts with Milagro
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Alexander Kappes Francis Halzen Aongus O’Murchadha
Recent results from the Milagro TeV gamma-ray observatory
More on Milagro Observations of TeV Diffuse Emission in Cygnus
Presentation transcript:

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Synoptic TeV Telescopes Results from Milagro Plans for HAWC

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Milagro 8 meters e  80 meters 50 meters A Water Cherenkov detector. Reconstruct shower direction to o from the timing shower front. Reject background by detecting penetrating component of hadronic showers Field of view is ~2 sr Duty factor ~95% Trigger rate ~1700 Hz (6 Mbytes/sec) Milagro Cross Section Schematic

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Milagro with Outriggers 175 Outrigger tanks (Tyvek lined – water filled) 2.4m diameter, 1m deep 34,000 m 2 enclosed area Completed in May 2003

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Background Rejection in Milagro Proton MC Data  MC Hadronic showers contain penetrating component:  ’s & hadrons – Cosmic-ray showers lead to clumpier bottom layer hit distributions – Gamma-ray showers give smooth hit distributions

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Parameterize “clumpiness” of the bottom layer hits –Compactness Require C > % gammas & 10% hadrons Sensitivity improved by 1.6 Require A 4 > % gammas & 1% hadrons Sensitivity further improved by 1.4 Background Rejection (Cont’d) mxPE:maximum # PEs in bottom layer PMT nb2:# bottom layer PMTs with 2 PEs or more fTop:# fraction of hit PMTs in Top layer fOut:# fraction of hit PMTs in Outriggers nFit:# PMTs used in the angle reconstruction

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Spectral Determination A4 is related to energy 2-20 TeV useful range Parameterization of events

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Crab Spectrum Exponential cut off energy is E c = 31.0 TeV (w/large error bars) Preliminary

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Milagro Sky Survey Crab Nebula Cygnus Region MRK (pre-outrigger) 2006 (post-outrigger)

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Significance GP diffuse excess clearly visible from l=25° to l=90° Cygnus Region shows extended excess F Cygnus ~ 2 x F crab 120 square degrees l (65,85), b (-3,3) The Galactic Plane

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis The Cygnus Region  Contours are GALPROP pion model  Crosses are EGRET (unidentified) sources  TeV/matter correlation good Chance noncorrelation 1.5x10 -6  Brightest TeV Region –MGRO J –~ TeV –Extent = 0.32 ± 0.12 deg. –Coincident with 2 EGRET sources (unID) PWN G Blazar (B ) –Energy Analysis in progress 12.5 TeV= E 2 dN/dE = (4.18 ± 0.52 stat ± 1.26 sys ) x TeV cm -2 s -1 sr -1 (excluding new source & assuming E -2.6 ) ~3.5 Crab in 180 sq. degree region

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Cygnus Region: Diffuse Gamma Rays Strong & Moskalenko GALPROP model of Cygnus Region Strong & Moskalenko optimized model –Increase  0 and IC component throughout Galaxy –Milagro 2-6x above prediction (optimized- standard models) –Unresolved sources? –Cosmic-ray accelerators? standard optimized Inverse Compton Pion bremsstrahlung

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Cygnus Region: Multi-wavelength 0.1 GeV Milagro 10 TeV gamma-ray Radio Continuum (408MHz) Atomic Hydrogen Radio Continuum (2.5GHz) Molecular Hydrogen X-Ray Gamma-Ray (100 MeV) Gamma-Ray (10 TeV) Radio Continuum (408MHz) Atomic Hydrogen Radio Continuum (2.5GHz) Molecular Hydrogen X-Ray Gamma-Ray (100 MeV) Gamma-Ray (10 TeV)

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis High Altitude Water Cherenkov Telescope  HAWC A proposal to redeploy the Milagro PMTs with Wider Spacing at Higher Altitude times more sensitive than Milagro

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis HAWC Goals Complete hemisphere survey to 25 mCrab –After 4 years Detailed map of Galactic diffuse emission Search for extended sources Detect AGN transients –4 Crab in 15 minutes Detect GRBs to 1/100 keV fluence Spectra to the highest energies (~100 TeV) Contemporaneous with GLAST, HESS, VERITAS, & IceCube

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Altitude Effect 4100m 2600m Difference between 2600m (Milagro) and 4100m: ~ 6x number of particles ~ 2-3x lower median energy

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Detector Layout Milagro: 450 PMT (25x18) shallow (1.4m) layer 273 PMT (19x13) deep (5.5m) layer 175 PMT outriggers Instrumented Area: ~40,000m 2 PMT spacing: 2.8m Total Area:3500m 2  det Area:2200m 2 HAWC: 900 PMTs (30x30) 5.0m spacing Single layer with 4m depth Instrumented Area: 22,500m 2 PMT spacing: 5.0m Total Area:22,500m 2  det Area:22,500m 2 HAWC Milagro

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Detector Layout Milagro: 2 layers at depths 1.4m – “Air Shower” Layer 6.0m – “Muon” Layer HAWC: Single intermediate layer Opaque curtains between cells 4m 6 m 5 m 2.8 m 1.4 m

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Curtains HAWC single muon rate = ~1 MHz Install curtains to optically isolate the PMTs. Avoid triggering on single muons Intrinsic Gamma hadron separation

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis HAWC Trigger Rate Multiplicity trigger at ~80 PMTs gives same CR trigger rate as Milagro at 50 PMTs Much higher Gamma-ray rate. Milagro HAWC Gamma-Ray Rate

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis  = ~0.4 deg  = ~0.25 deg Angular Resolution nTrigger = 50PMTs nTrigger = 200 PMTs

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Gamma/Hadron Separation Gammas Protons 30 GeV70 GeV230 GeV 20 GeV70 GeV 270 GeV Size of HAWC Size of Milagro deep layer Energy Distribution at ground level

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Gamma/Hadron Separation Circles are EM particles > 1 GeV Circles are  ’s & hadrons > 1 GeV Circles are 30m radius (~area of Milagro bottom layer) protons gammas

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Gamma/Hadron Separation nHit/cxPE>5.0 Eff  = 34% Eff CR= 3% nHit/cxPE>5.0 Eff  = 56% Eff CR= 1.5% Q Factor (sig/√bg) Cuts soft hard HAWC HESS HESS   = 56% -> 28%  CR = 3% -> 0.4% (shape only)

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Effective Area Gamma Area:  5.0  <1.0 O 200 PMT Trigger 80 PMT Trigger 20 PMT Trigger Area of GLAST Detector Size

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis HAWC Point Source Sensitivity Q (sig/√bg) (HAWC/Milagro) = 15 Significance from Crab transit (4 hr)~5  Crab 1 year ~100  Energy Resolution~30% above median Angular Resolution0.25 O -0.5 O S/B (hard cuts) ~ 1:1 for Crab Single transit: 20 excess / 25 bkg HAWC HAWC II GLAST EGRET Crab Nebula Whipple VERITAS/ HESS Current synoptic instruments

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Sensitivity vs. Source Spectrum Milagro HESS HAWC

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Sensitivity vs. Source Size

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Sky Surveys

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis GRB Sensitivity Fluence Sensitivity to 10s GRB. Both Milagro and HAWC can “self trigger” and generate alerts in real time. GRB rate in FOV ~100 GRB/year (BATSE rate) MilagroHAWC

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Pond Design Fiducial volume: 150m x 150m x 4m Actual size: 170m x 170m x 6m 1:1 slope at perimeter 6 m depth to allow for 4m over PMTs. Total volume: 115 Ml 170m 150m m 6m

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Building Construction Prefabricated steel building –Components manufactured at factory. –Shipped to site (~9 trucks) –Beams bolted not welded. –Cost ~1.5M$ (not installed) Building installation ~400 k Pond excavation ~300 k Liner cost ~600 k Total facility cost ~3.5 M Total Cost ~5.2 M 162m

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis YBJ Laboratory – Tibet, China Elevation: 4300m Latitude: 30 O 13’ N Longitude: 90 O 28’ E Lots of space. Available power. Available water. Tibet Air Shower Array

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Sierra Negra, Mexico LMT 1 km N Elevation = 4100m or 4300m Latitude = 19 O 00’N Longitude = 97 O 17’ W

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis HAWC Status and Timeline A proposal for a total project cost ~$5M has been submitted by the US groups to NSF –A proposal will be sent to DoE –Mexican Collaborators have submitted a proposal to their funding agency A final site decision will be made this year If approved: –Next year we will do site specific design –Start construction in 2008 –Complete construction and start data taking in 2010

Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Conclusion Milagro has made significant discoveries: –Discovery of diffuse TeV gamma rays from the Galactic plane –Discovery of diffuse TeV gamma rays from the Cygnus region –Discovery of a new extended TeV source in the Cygnus region HAWC can attain high sensitivity over an entire hemisphere –~15 times the sensitivity of Milagro –~5 sigma/day on the Crab –30 mCrab sensitivity over entire hemisphere –Unsurpassed sensitivity to extended sources –Unique TeV transient (AGN/GRB) detector –Can be built low cost