IRSIS : Preliminary Fiber bundle design Original datas : Fiber focal plane of F/5,5 telescope primary focal plane - TBC Telescope FOV : 15’x15’

Slides:



Advertisements
Similar presentations
HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
Advertisements

GLAO instrument specifications and sensitivities
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
ARCTIC Post-PDR Optical Design Study
FMOS: the fiber multiple-object spectrograph IV current status of OHS-based spectrograph Kyoto University : F.Iwamuro, T.Maihara, K.Ohta, S.Eto, M.Sakai.
1 Astronomical Observational Techniques and Instrumentation RIT Course Number Professor Don Figer Telescopes.
SPECTROSCOPY GROUP Photonics West February 3, 2013 Brian C. Smith, Ph.D.,Princeton Instruments Jason McClure, Ph.D. Princeton Instruments Dan Heller, Ph.D.
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
Announcements Exam 2 is scheduled for two weeks from today (April 2) but, due to all the missed days it will be pushed back one week to April 9 Homework:
Designing a High Resolution Fiber-Fed Spectrograph for Solar Observations Edmond Wilson Brennan Thomason Stephanie Inabnet Tamara Reed Harding University.
Announcements No lab tonight due to Dark Sky Observing Night last night Homework: Chapter 6 # 1, 2, 3, 4, 5 & 6 First Quarter Observing Night next Wednesday.
Optical Imaging in Astronomy 1st CASSDA School for Observers Observatorio del Teide, 20 – 25 April 2015 Franz Kneer Institut für Astrophysik Göttingen.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
Fiber Optics Defining Characteristics: Numerical Aperture Spectral Transmission Diameter.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
1 NLST – National Large Solar Telescope India’s Plan for a New, Large Solar Telescope D. Soltau (KIS), Th. Berkefeld (KIS), M. Süß (MTM), H. Kärcher (MTM)
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
Fiber Optics Defining Characteristics: Numerical Aperture Spectral Transmission Diameter.
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
A. Ealet Berkeley, december Spectrometer simulation Note in ● Why we need it now ● What should.
Visual Angle How large an object appears, and how much detail we can see on it, depends on the size of the image it makes on the retina. This, in turns,
D EDICATED S PECTROPHOTOMETER F OR L OCALIZED T RANSMITTANCE A ND R EFLECTANCE M EASUREMENTS Laetitia ABEL-TIBERINI, Frédéric LEMARQUIS, Michel LEQUIME.
Optical Design Work for a Laser-Fiber Scanned
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Engineering: NAHUAL Ireland Acquisition Camera, Focal Plane Mechanisms and Layout Tully Peacocke, National University of Ireland Maynooth Carlos del Burgo,
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
ZTFC 12-segment field flattener (and related) options R. Dekany 07 Aug 2012.
Mirrors & prisms MIT 2.71/ /12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
MIT 2.71/ /22/04 wk3-b-1 Imaging Instruments (part I) Principal Planes and Focal Lengths (Effective, Back, Front) Multi-element systems Pupils &
Chang,Liang YNAO,CAS July 09-10,2011 Fore Parts of Optical Design Scheme of FASOT (from telescope to spectrograph)
First results of the tests campaign in VISIBLE in VISIBLE for the demonstrator 12 October 2007 SNAP Collaboration Meeting Paris Marie-Hélène Aumeunier.
Integral Field Spectrograph Eric PRIETO CNRS,INSU,France,Project Manager 11 November 2003.
An IFU for IFOSC on IUCAA 2m Telescope
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
Optical Subsystem Roy Esplin Dave McLain. Internal Optics Bench Subassembly 2 Gut Ray Dichroic Beamsplitter (MWIR reflected, LWIR transmitted) LWIR Lens.
ZTF Optics Design P. Jelinsky ZTF Technical Meeting 1.
ASTR 3010 Lecture 18 Textbook N/A
WFIRST IFU -- Preliminary “existence proof” Qian Gong & Dave Content GSFC optics branch, Code 551.
MAXIM Periscope ISAL Study Highlights ISAL Study beginning 14 April 2003.
March Chuck DiMarzio, Northeastern University ECE-1466 Modern Optics Course Notes Part 2 Prof. Charles A. DiMarzio Northeastern University.
Optical & Radiometric Conceptual Design of EMAS Thermal Port Upgrade Kickoff Meeting June 29, 2010 Roy W. Esplin.
Low Polarization Optical System Design Anna-Britt Mahler Polarization Laboratory Group College of Optical Sciences.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Solar orbiter_______________________________________________.
Prof. Charles A. DiMarzio Northeastern University Fall 2003 July 2003
ZTF Optics Design ZTF Technical Meeting 1.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Overview of Luminus support for fiber coupling applications
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
06 Oct 05Space Science & Technology Dept1 Solar Orbiter Consortium Meeting 03 Mar 06 Optical Design Of Solar Orbiter Normal Incidence Spectrometer KF Middleton.
Astronomical Spectroscopic Techniques. Contents 1.Optics (1): Stops, Pupils, Field Optics and Cameras 2.Basic Electromagnetics –Math –Maxwell's equations.
Sasha GilevichDrive Laser Meeting December Launch System Outline General Layout Incidence Angle Effect of the broad bandwidth.
Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.
More Zemax screenshots of the optical setup of the NIKA prototype installed since June 2012 at its final permanent position at the 30m telescope. S. Leclercq,
July © Chuck DiMarzio, Northeastern University ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof.
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
CASE spectrograph Spectrograph Optical Specifications
Astronomical Spectroscopic Techniques
Introduction to Imaging with Lenses
IR Detector - Test cryostat : Machining
VSR FTIR ZnSe Lens Analysis Results.
Spectrophotometric calibration of the IFU spectrograph
An IFU slicer spectrometer for SNAP
Optical Design For a 32 Inch, All-Spherical Relay Cassegrain Telescope
EUS NI spectrograph design constraints
Astronomical Observational Techniques and Instrumentation
Optics Alan Title, HMI-LMSAL Lead,
Spectroscopic Observations (Massey & Hanson 2011, arXiv v2
Presentation transcript:

IRSIS : Preliminary Fiber bundle design Original datas : Fiber focal plane of F/5,5 telescope primary focal plane - TBC Telescope FOV : 15’x15’ TBC Spatial resolution : 18 arcsec (1 focal plane) Spectral resolution : 100 Detector : 1024x1024

IRSIS : Preliminary Fiber bundle design Manpower : D.Horville : Optical Engineer - Design and fabrication of anamorphoser for GIRAFFE spectrograph On ESO Very Large Telescope - Desing and fabrication of an Optical Anamorphoser for X-shooter on VLT -Zemax user, mathematica,Mathcad B.Lecomte : Technology Engineer -Characterization of A prototype of spectrograph for FUEGOS (GIRAFFE) -Characterization of fiber FRD on several fibers -Technology design, fabrication and delivering of Band 1 detector for HIFI instrument on Herschel space telescope (launch : 2008) -Inventor 11 and zemax user (recent).

IRSIS : Preliminary Fiber bundle design Supplier : Le verre Fluoré (Rennes, France) -Fabrication of IRSIS anamorphoser -Developement and fabrication of IR µlenses matrix. - Prototype of µlens matrix already done  quality TB improved. - Confidant with assimbling bundle procedure. - Wait for «frozen » prototype ordering.  How many fibers and µlens

IRSIS : Preliminary Fiber bundle design Micro-lenses Criterii : - micro-lens f length : Short  exit pupil of infinity. - F ratio of beam focused by µlens > F number of µlens. - µlens diameter> fiber diameter (core+cladding) - Image pupil diameter < Micro-lens core

IRSIS : Preliminary Fiber bundle design µlens pitch LL LL tt ee e µlens pitch =  L/1,414  core Fiber diameter(core+cladding)< µlens  core ee  e= 0,95 *  core n µlens pitch = 2*  L/rac(3) LL Square lenses Hexagonal lenses Bundle entrance

IRSIS : Preliminary Fiber bundle design Entrance µlens charactéristics (calculus) Telescope = diam.300mm Aperture = F/12 Fiber diameter = 100 µm Lens diameter = 315 µm µlens radius of curv. = 2.3mm Dimensions available for commercial fabrication. Check feasibility with infrared materials

IRSIS : Preliminary Fiber bundle design Fiber description  core 100µm Core index : 2µm Cladding index : 2µm (NA = 0,2) Cladding thickness : 40µm Buffer material : acrylate TBC Buffer thickness : 5 or 10µm Buffer cannot be removed (fiber protection)  cladding 180µm  buffer 200µm IR guide type 3

IRSIS : Preliminary Fiber bundle design Optimization : Bundle output Parameters : Optim : -lens radius of curvature -Thickness of µlens Fixed Files : -Fiber diameter : 100 µm -Output NA : 0,2 -Spectro input apert : F/5 200µ 760µm432µm µlens diameter : 295µm

IRSIS : Preliminary Fiber bundle design Bundle output : conclusions Slit quality is strongly dependant of : Entrance F/5 : a good choice Spectrograph aperture Ellipsoïdal lens Vs Spherical Shape of lens convexe face

IRSIS : Preliminary Fiber bundle design Is it a strong goal having a well define slit ? Low resolution = relax slit quality?   R ?

IRSIS : Preliminary Fiber bundle design How to separate lower band and higher band? Duplicate fiber output?(feasibility, transmission?) Infrared Dichroïc (losses?)

IRSIS : Preliminary Fiber bundle design Spectrograph : Czerny Turner type F/5 entrance. Parabolic off axis mirrors Serious Optimization  TBDone

IRSIS : Preliminary Fiber bundle design Strong needs of frozen parameters  Accurate optimization Files for bundle and test bench fabrication Nb of fibers, µlens dimensions, slit length

IRSIS : Preliminary Fiber bundle design Thermal model? ISRO, TIPR, CNRS,CNES? Mechanical design? LeV.Fluoré / interfaces (TIPR/CNRS)

IRSIS : Preliminary Fiber bundle design Test Bench Transmission, quality Qualification Vibration, thermal cycling, cooling