Breaking Barriers in Massive Star Formation with Stellar Interferometry Willem-Jan de Wit (ESO) Rene Oudmaijer (Leeds) Melvin Hoare (Leeds) Hugh Wheelwright.

Slides:



Advertisements
Similar presentations
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Advertisements

Massive Young Stars in the Galaxy Melvin Hoare University of Leeds UK.
School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Massive YSOs and the transition to UCHIIs.
NGC 5128 – Centaurus A Dante Minniti ESO Vitacura Nov 2005.
Science with the Very Large Telescope Interferometer (VLT-I) Jean-Baptiste Le Bouquin (ESO, Chile) for VLTI Team, AMBER team, MIDI team, PRIMA team… The.
Armando DOMICIANO de SOUZA Main collaborators: O. Chesneau (OCA, F), T. Driebe (MPIfR, D), K-.H. Hofmann (MPIfR, D), S. Kraus (MPIfR, D), A. Miroshnichenko.
The Polarization of Achernar (α Eri, B3Vpe) David McDavid Department of Astronomy University of Virginia.
A massive disk around the intermediate-mass young star AFGL 490 ? Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris.
Eddington limited starbursts in the central 10pc of AGN Richard Davies, Reinhard Genzel, Linda Tacconi, Francisco Mueller Sánchez, Susanne Friedrich Max.
Temporal variations of the circumstellar environment of the Mira star V Oph Keiichi Ohnaka Max-Planck-Institut für Radioastronomie ESO Santiago Seminar.
Outflow, infall, and rotation in high-mass star forming regions
Mini Workshop on Star Formation and Astrochemistry. Barcelona, 2006 November 23 1 Robert Estalella, Aina Palau, Maite Beltrán (UB) Paul T. P. Ho (CfA),
School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES AMI and Massive Star Formation Melvin Hoare.
The Influence of Planets on Disk Observations (and the influence of disks on planet observations) Geoff Bryden (JPL) Doug Lin (UCSC) Hal Yorke (JPL)
ORBITAL MOTIONS IN BINARY AND MULTIPLE PROTOSTARS L. F. Rodríguez (IAUNAM, Morelia) L. Loinard, M. Rodríguez, & P. D’Alessio (IAUNAM, Morelia) S. Curiel,
Mid-infrared interferometry of the Mira star RR Sco with the VLTI/MIDI instrument collaborators: Keiichi Ohnaka, MPIfR Keiichi Ohnaka, MPIfR Karl-Heinz.
04/03/2011ARC Meeting, CSL Long baseline interferometry applied to the study of colliding-wind massive binaries: current status and prospects for the near.
Model SEDs of Massive YSOs Barbara Whitney, Tom Robitaille, Remy Indebetouw, Kenny Wood, and Jon Bjorkman.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
Results from the Keck Interferometer Commissioning YSO Project Rafael Millan-Gabet Caltech/Michelson Science Center Collaboration: PIs: John Monnier (U.
21 Mars 2006Visions for infrared astronomy1 Protoplanetary worlds at the AU scale Jean Philippe Berger J. Monnier, R. Millan-Gabet, W. Traub, M. Benisty,
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
VLTI-AMBER observations of the LBV η Carinae with high spectral resolutions of Λ / Δλ = 1,500 & 12,000 Goutelas, France June 4-16, 2006 Gerd Weigelt Max-Planck.
VLTI ’ s view on the circumstellar environment of cool evolved stars: EuroSummer School Observation and data reduction with the Very Large Telescope Interferometer.
Rotating Disks around O-type Young Stars in NGC7538 IRS1 3D Gas Dynamics from Methanol Masers observed with the EVN Ciriaco Goddi.
The VLTI view of compact dusty environments around evolved stars Olivier CHESNEAU Observatoire de la Côte d’Azur (OCA) F. Lykou, E. Lagadec, A. Zijlstra.
JHK-band Spectro-Interferometry of T Cep with the IOTA Interferometer G. Weigelt, U. Beckmann, J. Berger, T. Bloecker, M.K. Brewer, K.-H. Hofmann, M. Lacasse,
Active Galaxies Definition – –Amount of Energy –Type of Energy Non-thermal Polarized Other characteristics –Emission spectra Hydrogen – Balmer series &
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
NIR interferometry of the Seyfert galaxy NGC 1068: present interferometric NIR results and future goals G. Weigelt T. Beckert M. Wittkowski.
Mid-IR Spectra of IRAS IRS 1 and IRS 3 M.F. Campbell 1,9,10, T.K. Sridharan 2,10, H. Beuther 3, J. H. Lacy 4, J.L. Hora 2, Q. Zhu 5, M. Kassis.
VLBI observations of H 2 O masers towards the high-mass Young Stellar Objects in AFGL 5142 Ciriaco Goddi Università di Cagliari, INAF-Osservatorio Astronomico.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Dusty disks in evolved stars?
Studying Young Stellar Objects with the EVLA
Randolf Klein SOFIA – USRA/NASA Ames July 2014 AASTCS 4: Workshop on Dense Cores - Monterey, CA Issues with SED Fitting, PMS Tracks, and the Birthline.
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
THE CIRCINUS GALAXY (ESO97-G013) SEEN BY VLTI/MIDI
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
CHARA Collaboration Year-Five Science Review Observations of Be Star Circumstellar disks with the CHARA Array Status of the Be stars Survey Project CHARA.
MIDI design, performance, operations, and science Markus Schöller (INS)
Milli-arcsecond Imaging of the Inner Regions of Protoplanetary Disks Stéphanie Renard In collaboration with F. Malbet, E. Thiébaut, J.-P. Berger & M. Benisty.
Contributions if Interferometry for Orion M. Robberto (ESA/STScI)
Forming High Mass Stars Probing the Formation Epoch.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
Diffraction-limited bispectrum speckle interferometry of the carbon star IRC with 73 mas resolution: The dynamic evolution of the innermost circumstellar.
Science with interferometry during the last decade Olivier CHESNEAU delivered and distorted by John Monnier.
Bispectrum speckle interferometry of NGC 1068
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Warm, Dense Gas Near the Massive Protostar AFGL 2136 IRS 1 as Revealed by Absorption from the ν 1, ν 2, and ν 3 Bands of Water Nick Indriolo 1, David Neufeld.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Young Stellar Objects: The Inner AU John D. Monnier University of Michigan Art Credit: Luis Belerique Collaborators Ajay Tannirkulam (UM)Rafael Millan-Gabet.
The circumstellar environment of evolved stars as seen by VLTI / MIDI Keiichi Ohnaka Max-Planck-Institut für Radioastronomie, Infrared Interferometry Group.
The University of Sheffield Joanna Holt 20 th October 2006 Emission line outflows: the evidence for AGN-induced feedback Clive Tadhunter.
The Mira variable S Ori: SiO maser shells related to the photosphere and dust shell at 3 epochs Markus Wittkowski (ESO), David A. Boboltz (U.S. Naval Observatory),
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
The Very Large Telescope Interferometer Neon School, Garching 29 August, 2008 Andrea Richichi European Southern Observatory.
CHARA Collaboration Year-Five Science Review. First science results with VEGA II: differential interferometry D. BonneauA. Domiciano O. Chesneau D. Mourard.
Observability of YSOs with the WISE and AKARI infrared observatories Sarolta Zahorecz Eötvös University, Budapest PhD student, 3. year Thesis advisor:
Near-infrared interferometry of NGC 1068 Markus Wittkowski (ESO) Based on work ( ) with R. Arsenault, Y. Balega, T. Beckert, W. J. Duschl, K.-H.
Radio Continuum Observations of Low Mass Young Stars Driving Outflows Rachael Ainsworth (DIAS) Radio Stars and Their Lives in the Galaxy 3-5 October 2012.
Surveys of the Galactic Plane for Massive Young Stellar Objects
Near-infrared VLT adaptive optics imaging of planetary nebulae
Chasing disks around massive stars with Malcolm
-Orbital Motions and Mass Determination
Presentation transcript:

Breaking Barriers in Massive Star Formation with Stellar Interferometry Willem-Jan de Wit (ESO) Rene Oudmaijer (Leeds) Melvin Hoare (Leeds) Hugh Wheelwright (Leeds)

What are the dominant structures emitting in N-band? Spherical models: ISO-SWS N-band

MIDI at the VLTI Mid-IR beam combiner (N-band) Combining 2 VLTI beams (UTs or ATs) Spectrally dispersed fringes (30 & 230) Baselines 10 to 200 meters (10 mas) Visibilities Leinert et al. (2004): MIDI instrument Haguenaur et al. (2008): VLTI architecture 13 micron 8 micron

The case of W33A: jets and outflows JCMT/HARP 12CO(3-2): L = 10 5 L o D kin = 3.8 kpc Weak, compact radio emission (Rengarajan & Ho 1995) Broad single peaked HI emission (Bunn et al. 1995) Fast bipolar jet (Br g) (Davies et al. 2010) K-band (UKIDSS), VLTI baselines: Davies et al milli-arcsecond

The case of W33A: jets and outflows JCMT/HARP 12CO(3-2): L = 10 5 L o D kin = 3.8 kpc Weak, compact radio emission (Rengarajan & Ho 1995) Broad single peaked HI emission (Bunn et al. 1995) Fast bipolar jet (Br g) (Davies et al. 2010) K-band (UKIDSS), VLTI baselines: Laser-guide star assisted NIFS at Gemini North (Davies et al. 2010) 4 AU

The case of W33A: jets and outflows JCMT/HARP 12CO(3-2): L = 10 5 L o D kin = 3.8 kpc Weak, compact radio emission (Rengarajan & Ho 1995) Broad single peaked HI emission (Bunn et al. 1995) Fast bipolar jet (Br g) (Davies et al. 2010) K-band (UKIDSS), VLTI baselines: Davies et al milli-arcsecond

W33A MIDI observables FLUX spectrum Visibility spectrum (micron) 4 baselines Near perpendicular PAs Baselines stretching between 40 and 60 meters

W33A MIDI observables FLUX spectrum Visibility spectrum (micron) 4 baselines Near-perpendicular PAs Baselines stretching between 40 and 60 meters Equivalent Gaussian FWHM sizes between 95 and 115AU No flux 95AU

W33A model fit Model 350 micron: Near-IR: Van der Tak et al. (2000) Axi-symmetric dust radiative transfer code ( Whitney et al ) TSC Envelope, outflow cavity, and disk Observed Model H-band K-band H - K

W33A model fit (cont.) MIDI Visibilities: Dust model parameters: No disk, only envelope (cavities) M infall = M o /yr R sub = 25 AU (nominal) A v = 230 T eff = K R * = 8.5 R o M * = 25 M o 2*q = 20 o (opening angle) 2200AU Monochromatic images on the sky: de Wit et al. 2010

W33A and disk emission Disk limits from N-band interferometry: Dust disk : M < 0.01M o Accretion disk : M acc < M o /yr Davies et al. 2010

Disk signature in AFGL 2136 ? UKIDSS K-band L= 7e4 Lsol D= 2.0 Kpc Polarization disk (Murakawa et al. 2008) Arcmin bipolar CO outflow (Kastner et al. 1995) Compact, 70AU radio emission (Menten & Van der Tak 2004) K-band polarization (Murakawa et al. 2008) 1 arcminute outflow

Same procedure as W33A (2.5D axisymmetric dust radiative transfer) Fit envelope emission (SED, 24.5 mu and N-band short spacing) Necessity of compact emitting source at <8.5 micron for MIDI visibilities Disk signature in AFGL 2136 ?

Same procedure as W33A (2.5D axisymmetric dust radiative transfer) Fit envelope emission (SED, 24.5 mu and N-band short spacing) Necessity of compact emitting source at <8.5 micron for MIDI visibilities Either accretion disk or supergiant star to fit N-band dispersed visibilities Disk signature in AFGL 2136 ? Monnier et al. (2009)

Same procedure as W33A (2.5D axisymmetric dust radiative transfer) Fit envelope emission (SED, 24.5 mu and N-band short spacing) Necessity of compact emitting source at <8.5 micron for MIDI visibilities Either accretion disk or supergiant star to fit N-band dispersed visibilities Disk signature in AFGL 2136 ?

Same procedure as W33A (2.5D axisymmetric dust radiative transfer) Fit envelope emission (SED, 24.5 mu and N-band short spacing) Short spacing + SED : 120 AU dust radius Necessity of compact emitting source at <8.5 micron for MIDI visibilities Either accretion disk or supergiant star to fit N-band dispersed visibilities M acc : M o /yr Disk signature in AFGL 2136 ? 1.5” 8 micron

Conclusions N-band interferometry is able to provide important new insights in the formation of high-mass stars. In W33A: N-band emission at 100 AU scale is dominated by warm dust in the interface between outflow cavity and envelope Contribution by accretion disk is similar or less than TSC envelope infall rate AFGL 2136: evidence for compact emission: supergiant star or accretion disk

Near future with VLTI PIONIER : 4 beam combiner H & K bands, R=40 Commissioning & early science November 2010 (JP Berger et al. 2010) MATISSE: 4 beam combiner L, M, N bands (R=30, 1500) 2014 (Wolff et al.)

MIDI observations of IRAS AU 2.2 micron 8.0 micron Image cuts 0.1% and 10% of maximum Visibilities: over-resolved component 40% flux

AFGL 2136 IRS1 (de wit et al. In prep) W33A (de Wit et al 2010) IRS9A (Vehoff et al. 2010)