Denis Caromel1 Joint work with Ludovic Henrio – Eric Madelaine et. OASIS members OASIS Team INRIA -- CNRS - I3S – Univ. of Nice Sophia-Antipolis, IUF.

Slides:



Advertisements
Similar presentations
Elton Mathias and Jean Michael Legait 1 Elton Mathias, Jean Michael Legait, Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis,
Advertisements

European Commission Directorate-General Information Society Unit F2 – Grid Technologies INSERT PROJECT ACRONYM HERE BY EDITING THE MASTER SLIDE (VIEW.
Eric MADELAINE1 E. Madelaine, Antonio Cansado, Emil Salageanu OASIS Team, INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis OSCAR meeting, Valparaiso,
Denis Caromel Denis Caromel 3 Clouds.
Denis Caromel 1 Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF September 4.
1 Ludovic Henrio Paris, An Open Source Middleware for the Grid Programming Wrapping Composing Deploying.
Denis Caromel1 Institut Universitaire de France (IUF) OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis ECCOMAS, July 2004 ProActive: Components.
Introduction in algorithms and applications Introduction in algorithms and applications Parallel machines and architectures Parallel machines and architectures.
Chair of Software Engineering 1 Concurrent Object-Oriented Programming Arnaud Bailly, Bertrand Meyer and Volkan Arslan.
Denis Caromel1 Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF 3 rd ProActive User Group, Nov Model.
Agenda 1. Background: OASIS, ActiveEon 2. ProActive Overview 3. Programming (Components: GCM Standard) 4. Optimizing 5. Scheduling + Resourcing 6. SOA,
Optimisation of behaviour of component-based distributed systems INRIA - I3S - CNRS – University of Nice Sophia-Antipolis EPC SCALE Galyna Zholtkevych.
Fabien Viale 1 Matlab & Scilab Applications to Finance Fabien Viale, Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S.
Denis Caromel1 Institut universitaire de France (IUF) OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis REUNA, Santiago, May 2004 GRID.
Asynchronous Components Asynchronous communications: from calculi to distributed components.
Safe composition of distributed adaptable components A distributed component model Behavioural specification and verification Ludovic Henrio and Eric Madelaine.
Oct Multi-threaded Active Objects Ludovic Henrio, Fabrice Huet, Zsolt Istvàn June 2013 –
1 Chapter 2. Communication. STEM-PNU 2 Layered Protocol TCP/IP : de facto standard Our Major Concern Not always 7-layered Protocol But some other protocols.
Oct Active objects: programming and composing safely large-scale distributed applications Ludovic Henrio SCALE team, CNRS – Sophia Antipolis July.
1 Update Strategies for First Class Futures Khan Muhammad, Ludovic Henrio INRIA, Univ. Nice Sophia Antipolis,CNRS.
Formalism and Platform for Autonomous Distributed Components Bio-inspired Networks and Services A Distributed Component Model Formalisation in Isabelle.
Eric Madelaine FORTE ’04 -- Madrid sept /25 Parameterized Models for Distributed Java Objects Eric Madelaine work with Tomás Barros, Rabéa Boulifa.
Eric MadelaineOSMOSE -- WP2 -- Prague June 2004 Models for the Verification of Distributed Java Objects Eric Madelaine work with Tomás Barros, Rabéa Boulifa,
Denis Caromel1 Troisieme partie Cours EJC 2003, AUSSOIS, Denis Caromel OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis.
From Modeling to Deployment of Active Objects - A ProActive backend for ABS Ludovic Henrio, Justine Rochas With the contribution of: Fabrice Huet, Zsolt.
Denis Caromel 1 Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF Open Source.
OASIS OASIS Active Objects, Semantics, Internet, and Security Team: 30 persons Research Themes: Grid Computing Objects and Components Practice and Theory.
Eric MADELAINE1 T. Barros, L. Henrio, E. Madelaine OASIS Team, INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis (FACS’05), Fractal workshop, Grenoble.
A graphical specification environment for GCM component-based applications INRIA – I3S – CNRS – University of Nice-Sophia Antipolis EPC OASIS Oleksandra.
Asynchronous Components with Futures: Semantics, Specification, and Proofs in a Theorem Prover Components (Distributed) Futures Formalisations (and proofs)
Behavioural Verification of Distributed Components Ludovic Henrio and Eric Madelaine ICE
1 Romain Quilici ObjectWeb Architecture meeting July 2nd 2003 ProActive Architecture of an Open Middleware for the Grid.
Denis Caromel1 Institut universitaire de France (IUF) INRIA Sophia-Antipolis – CNRS – I3S – Université de Nice Luis Mateu DCC – Universidad de Chile Eric.
Emil Salageanu ProActive Parallel Suite ActiveEon March 2008 ActiveEon Hands On Programming.
Grid programming with components: an advanced COMPonent platform for an effective invisible grid © GridCOMP Grids Programming with components.
1. 2 Objects to Distributed Components (1) Typed Group Java or Active Object ComponentIdentity Cpt = newActiveComponent (params); A a = Cpt ….getFcInterface.
Denis Caromel 1 Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF Strong Programming.
Mastère RSD - TC4 2005/20061 Distributed Components –ProActive-Fractal : main concepts –Behaviour models for components –Deployment, management, transformations.
Parameterized Models for Distributed Java Objects Tomás Barros & Rabéa Boulifa OASIS Project INRIA Sophia Antipolis April 2004.
Eric MadelaineOSCAR Workshop -- Santiago Nov Verification of Distributed Applications Eric Madelaine work with Isabelle Attali, Tomás Barros, Rabéa.
A visualisation and debugging tool for multi-active objects Ludovic Henrio, Justine Rochas LAMHA, Nov 2015.
Transparent First-class Futures and Distributed Components Introduction: components, futures, and challenges Statically Representing Futures An Example.
Denis Caromel1 Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF October
Eric MADELAINE ---- OASIS1 E. Madelaine Oasis team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis RESECO ’08 Santiago – Nov. 24, 2008 Specification.
1 OASIS Active Objects, Semantics, Internet, and Security Large Scale, Parallel and Distributed Systems Middleware, Programming Models & Semantics, Verification.
Eric MADELAINE1 A. Cansado, L. Henrio, E. Madelaine OASIS Team, INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis Fractal workshop, Nantes, 3 july.
RESECO - Montevideo - 22 nov 2007Reseco, Montevideo, 22 nov 2007 Eric Madelaine - OASIS Team1 Specifying and Generating Safe GCM Components INRIA – Sophia.
VERIFYING THE CORRECT COMPOSITION OF DISTRIBUTED COMPONENTS: FORMALISATION AND TOOL Ludovic Henrio 1, Oleksandra Kulankhina 1,2, Dongqian Liu 3, Eric Madelaine.
Specifying Fractal and GCM Components With UML Solange Ahumada, Ludovic Apvrille, Tomás Barros, Antonio Cansado, Eric Madelaine and Emil Salageanu SCCC.
Distributed Components and Futures: Models and Challenges A Distributed Component Model Distributed Reconfiguration Calculi for Components and Futures.
A Theory of Distributed Objects Toward a Foundation for Component Grid Platforms Ludovic HENRIO l A Theory of Distributed Objects l Components l Perspectives.
Eric MADELAINE -- GridComp -- OASIS 1 E. Madelaine (A. Cansado) GridComp project OASIS team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis GridComp.
Eric MADELAINE1 T. Barros, L. Henrio, E. Madelaine OASIS Team, INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis DCC, University.
Mastère RSD - TC4 2005/20061 Distributed JAVA Aims and Principles The ProActive library Models of behaviours Generation of finite (parameterized) models.
1 Romain Quilici OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF July 2nd 2003 ProActive Architecture.
1 Chapter 2. Communication. STEMPusan National University STEM-PNU 2 Layered Protocol TCP/IP : de facto standard Our Major Concern Not always 7-layered.
GCM/ProActive: a distributed component model, its implementation, and its formalisation Ludovic Henrio OASIS Team INRIA – UNS – I3S – CNRS Sophia Antipolis.
2. CALCULUS: A S P. A Theory of Distributed Objects D. Caromel, L. Henrio, Springer 2005, Monograph A Calculus: ASP: Asynchronous Sequential Processes.
Model Generation for Distributed Java Programs Rabéa Boulifa Eric Madelaine Oasis Team INRIA, Sophia-Antipolis France, I3S, UNSA Luxembourg, November 28,
Eric MADELAINE1 T. Barros, L. Henrio, E. Madelaine OASIS Team, INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis (FACS’05), Fractal workshop, Grenoble.
© Oxford University Press 2011 DISTRIBUTED COMPUTING Sunita Mahajan Sunita Mahajan, Principal, Institute of Computer Science, MET League of Colleges, Mumbai.
Denis Caromel1 OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis -- IUF IPDPS 2003 Nice Sophia Antipolis, April Overview: 1. What.
ASYNCHRONOUS AND DETERMINISTIC OBJECTS ASP: Asynchronous Sequential Processes l Distributed objects l Asynchronous method calls l Futures and Wait-by-necessity.
Asynchronous Distributed Components: Concurrency and Determinacy I. Context: Distributed Components and Active Objects II. Asynchronous Distributed Components.
Behavioural Models for Distributed Hierarchical Components
Distributed Components and Futures: Models and Challenges
DISTRIBUTED COMPUTING
Lecture 4: RPC Remote Procedure Call Coulouris et al: Chapter 5
Semantic Formalisms 3: Distributed Applications
ProActive Architecture of an Open Middleware for the Grid
Presentation transcript:

Denis Caromel1 Joint work with Ludovic Henrio – Eric Madelaine et. OASIS members OASIS Team INRIA -- CNRS - I3S – Univ. of Nice Sophia-Antipolis, IUF Keynote talk at Formal Aspects of Component Systems, FACS, Prague, Sept Theory to Practice in Distributed Component Systems

Denis Caromel2 Joint work with Ludovic Henrio – Eric Madelaine et. OASIS members Theory to Practice in Distributed Component Systems 1. Distributed Objects : Active Objects 2. Calculus: ASP 3. Dist. Component Specification: GCM 4. Middleware: ProActive 5. Model Checking: Vercors Statement a: Prog. Language – Model / Semantics Statement b.: Active Objects

Denis Caromel3 Joint work with Ludovic Henrio – Eric Madelaine et. OASIS members Practice to Theory to Practice in Distributed Component Systems 1. Distributed Objects : Active Objects 2. Calculus: ASP 3. Dist. Component Specification: GCM 4. Middleware: ProActive 5. Model Checking: Vercors Statement a: Prog. Language – Model / Semantics Statement b.: Active Objects

Denis Caromel4 Features for Scalable, Distributed Objects and Components Asynchronous Calls 1 st Class Futures Typed Groups

Denis Caromel5 Features for Component Verifications Wait-by-Necessity Future Update can occur anytime (no consequences) No sharing No user-, code-level, concurrency and parallelism Insensitive Semantics to Distribution / Location

Denis Caromel6 1. Active Objects Programming

Denis Caromel7 ProActive model (1) Java RMI (Remote Method Invocation = Object RPC = o.foo(p) ) plus a few important features: Asynchronous Method calls towards Active Objects: Implicit Futures as RMI results Wait-By-Necessity: Automatic wait upon the use of an implicit future First-Class Futures: - Futures passed to other activities - Sending a future is not blocking

Denis Caromel8 A ProActive : Active objects Proxy Java Object A ag = newActive (“A”, […], VirtualNode) V v1 = ag.foo (param); V v2 = ag.bar (param);... v1.bar(); //Wait-By-Necessity V Wait-By-Necessity is a Dataflow Synchronization JVM A Active Object Future Object Request Req. Queue Thread v1 v2 ag WBN!

Denis Caromel9 Call between Objects: Parameter Passing: Active Objects ba x Copy: at serializ ation Object passed by Deep Copy - Active Object by Reference b.foo(x, c) c c Reference Passing

Denis Caromel10 Interleaving-Free Synchronizations

Denis Caromel11 ProActive : Intra-object synchronization Explicit control: Library of service routines: Non-blocking services,... serveOldest (); serveOldest (f); Blocking services, timed, etc. serveOldestBl (); serveOldestTm (ms); Waiting primitives waitARequest(); etc. class BoundedBuffer extends FixedBuffer implements RunActive { // Programming Non FIFO behavior runActivity (ExplicitBody myBody) { while (...) { if (this.isFull()) serveOldest("get"); else if (this.isEmpty()) serveOldest ("put"); else serveOldest (); // Non-active wait waitArequest (); } }} Implicit (declarative) control: library classes e.g. : Blocking Condition Abstraction for concurrency control: doNotServe ("put", "isFull");

Denis Caromel12 First-Class Futures Update

Denis Caromel13 Wait-By-Necessity: First Class Futures ba Futures are Global Single-Assignment Variables V= b.bar () c c c.gee (V) v v b

Denis Caromel14 Future update strategies No partial replies and requests: No passing of futures between activities, more deadlocks Eager strategies: as soon as a future is computed Forward-based: –Each activity is responsible for updating the values of futures it has forwarded Message-based: –Each forwarding of future generates a message sent to the computing activity –The computing activity is responsible for sending the value to all Mixed strategy: Futures update any time between future computation and WbN Lazy strategy: On demand, only when the value of the future is needed (WbN on it)

Denis Caromel15 Wait-By-Necessity: Eager Forward Based ba AO forwarding a future: will have to forward its value V= b.bar () c c c.gee (V) v v b

Denis Caromel16 Wait-By-Necessity: Eager Message Based ba AO receiving a future: send a message V= b.bar () c c c.gee (V) v v b

Denis Caromel17 Wait-By-Necessity: Lazy Strategy ba An Active Object requests a Future Value when needed V= b.bar () c c.gee (V) v v c

Denis Caromel18 TYPED ASYNCHRONOUS GROUPS

Denis Caromel19 A Creating AO and Groups Typed Group Java or Active Object A ag = newActiveGroup (“A”, […], VirtualNode) V v = ag.foo(param);... v.bar(); //Wait-by-necessity V Group, Type, and Asynchrony are crucial for Cpt. and GRID JVM

Denis Caromel20 Broadcast and Scatter JVM ag cg ag.bar(cg); // broadcast cg ProActive.setScatterGroup(cg) ; ag.bar(cg); // scatter cg c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 s c1 c2 c3 s

Denis Caromel21 next