Modern Cryptography New Directions in Cryptography W.Diffie & M.E.Hellman Probabilistic Encryption S.Goldwasser & S.Micali.

Slides:



Advertisements
Similar presentations
Public Key Cryptography INFSCI 1075: Network Security – Spring 2013 Amir Masoumzadeh.
Advertisements

Modern Cryptography New Directions in Cryptography W.Diffie & M.E.Hellman Probabilistic Encryption S.Goldwasser & S.Micali.
1 Introduction CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell.
Foundations of Cryptography Lecture 13 Lecturer: Moni Naor.
7. Asymmetric encryption-
Session 4 Asymmetric ciphers.
Public Key Algorithms …….. RAIT M. Chatterjee.
Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
WS Algorithmentheorie 03 – Randomized Algorithms (Public Key Cryptosystems) Prof. Dr. Th. Ottmann.
Cryptography and Network Security Chapter 9. Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively.
Public Key Cryptography Topical Lecture Week 10. PUBLIC AB Public Key Cryptography A: Hey B, send me an encoded message. This is how you encode a message.
CMSC 414 Computer and Network Security Lecture 6 Jonathan Katz.
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
Fall 2010/Lecture 311 CS 426 (Fall 2010) Public Key Encryption and Digital Signatures.
Dr.Saleem Al_Zoubi1 Cryptography and Network Security Third Edition by William Stallings Public Key Cryptography and RSA.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
Chapter 9 – Public Key Cryptography and RSA Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both.
Public Key Cryptography Bryan Pearsaul. Outline What is Cryptology? Symmetric Ciphers Asymmetric Ciphers Diffie-Hellman RSA (Rivest/Shamir/Adleman) Moral.
CSCI 172/283 Fall 2010 Public Key Cryptography. New paradigm introduced by Diffie and Hellman The mailbox analogy: Bob has a locked mailbox Alice can.
Introduction to Public Key Cryptography
Public Key Model 8. Cryptography part 2.
Public Key Encryption and the RSA Public Key Algorithm CSCI 5857: Encoding and Encryption.
1 CIS 5371 Cryptography 8. Asymmetric encryption-.
CSCI 398 Research Topics in Computer Science Yana Kortsarts Computer Science Department Widener University Chester, PA.
Chapter 12 Cryptography (slides edited by Erin Chambers)
Tonga Institute of Higher Education Design and Analysis of Algorithms IT 254 Lecture 9: Cryptography.
Prime Numbers Prime numbers only have divisors of 1 and self
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Network Security (A Very Brief Introduction)
Network and Communications Network Security Department of Computer Science Virginia Commonwealth University.
Problems with symmetric (private-key) encryption 1) secure distribution of keys 2) large number of keys Solution to both problems: Public-key (asymmetric)
I-4 security.
Merkle-Hellman Knapsack Cryptosystem Merkle offered $100 award for breaking singly - iterated knapsack Singly-iterated Merkle - Hellman KC was broken by.
RSA Ramki Thurimella.
1 Lecture 9 Public Key Cryptography Public Key Algorithms CIS CIS 5357 Network Security.
CS526: Information Security Prof. Sam Wagstaff September 16, 2003 Cryptography Basics.
4 th lecture.  Message to be encrypted: HELLO  Key: XMCKL H E L L O message 7 (H) 4 (E) 11 (L) 11 (L) 14 (O) message + 23 (X) 12 (M) 2 (C) 10 (K) 11.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Section 4.4: The RSA Cryptosystem Practice HW Handwritten and Maple Exercises p at end of class notes.
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
Computer and Network Security Rabie A. Ramadan Lecture 6.
Cryptography and Network Security Chapter 9 - Public-Key Cryptography
CS461/ECE422 Spring 2012 Nikita Borisov — UIUC1.  Text Chapters 2 and 21  Handbook of Applied Cryptography, Chapter 8 
Merkle-Hellman Knapsack Cryptosystem
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
Chapter 3 (B) – Key Management; Other Public Key Cryptosystems.
15-499Page :Algorithms and Applications Cryptography I – Introduction – Terminology – Some primitives – Some protocols.
Cryptography and Network Security Public Key Cryptography and RSA.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
NEW DIRECTIONS IN CRYPTOGRAPHY Made Harta Dwijaksara, Yi Jae Park.
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
The First Ten Years of Public-Key Cryptography Paper by: Whitfield Diffie Presentation by Taotao Zhao.
PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9 PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9 Principles Applications Requirements RSA Algorithm Description.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Computer Security Lecture 5 Ch.9 Public-Key Cryptography And RSA Prepared by Dr. Lamiaa Elshenawy.
Introduction to Pubic Key Encryption CSCI 5857: Encoding and Encryption.
Encryption and Encryption and Decryption Speaker:Tsung Ray Wang Advisor:Prof.Li-Chun Wang.
Public Key Cryptosystem In Symmetric or Private Key cryptosystems the encryption and decryption keys are either the same or can be easily found from each.
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Key Exchange in Systems VPN usually has two phases –Handshake protocol: key exchange between parties sets symmetric keys –Traffic protocol: communication.
Asymmetric-Key Cryptography
Network Security Design Fundamentals Lecture-13
Private-Key Cryptography
Where Complexity Finally Comes In Handy…
Cryptology Design Fundamentals
PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9
Where Complexity Finally Comes In Handy…
Network Security Design Fundamentals Lecture-13
Where Complexity Finally Comes In Handy…
Presentation transcript:

Modern Cryptography New Directions in Cryptography W.Diffie & M.E.Hellman Probabilistic Encryption S.Goldwasser & S.Micali

By Theoretically – Perfect secrecy [Shannon]. NOT MUCH BESIDES… The notion of a function easy to compute but hard to “inverse” arose... [Purdy] Complexity: NP (completeness) vs. P [Cook, Karp]. Practically – Computers and “Private key security” exist (DES), and are becoming more and more applicable.

In fact, computers and cryptography go hand in hand from the first computers. (WWII) In fact, there were confidential papers in cryptography (in CESG): Non-secret-encryption [J.H.Ellis ‘70] (with a proof!) ¼RSA [C.C.Cocks ’73] By (hush hush!)

By (biographical details) In 1972, Whitfiled Diffie, an AI graduate student, developes more than an interest in cryptography. In 1974, at the age of 30, he phones Martin Hellman, assistant professor in Stanford, to discuss issues in crypto. They begin collaborating. In 1975, Diffie thinks of quitting altogether. "I was worried that I wasn't particularly remarkable as a programmer and that my lot in life would get progressively worse if things continued going as they were." Also In 1975, he bares success. "The thing I remember distinctly is that I was sitting in the living room when I thought of it the first time and then I went downstairs to get a Coke and I almost lost it," he says. "I mean, there was this moment when - I was thinking about something. What was it? And then I got it back and didn't forget it."

New Directions in Cryptography W.Diffie & M.E.Hellman HellmanDiffie We stand today on the brink of a “We stand today on the brink of a revolution in cryptography”

Emphasis 1.NO definitions, notations, claims, proofs etc. This is an invited paper, so: 2. HOWEVER: clever ideas, clever insights! 3. Practicality. Historical survey.

So, what do we have in “ conventional cryptographic system ” (block or stream)? S k :{P}!{C}

“ Conventional Cryptographic System ” Goal: Enciphering and deciphering – “inexpensive”, but any “cryptananlytic operation” is “too complex to be economical”. “We call a task computationally infeasible, if its cost... is finite but impossibly large.” Important desired property- Error propagation: “A small change in the input block produces a major change in the resulting output”.

“ Conventional Cryptographic System ” Threats: ({S k } is known) Eavesdropping – “Ciphertext only”, “Known plaintext”, “Chosen plaintext”. Injecting – new messages, or combining/repeating. Problems: 3. n users )  (n 2 ) keys. 1. Where does the secure channel comes from? 2. Authentication & Signature.

Introducing: THE PUBLIC KEY CRYPTOSYSTEM!

THE PUBLIC KEY CRYPTOSYSTEM! Two families {E k } k, {D k } k of invertible transformations, E k, D k :{M}!{M}, s.t. the following holds: 1. 8 k, E k is the inverse of D k k, 8 m2{M}, E k (m), D k (m), are “easy to compute”. 3. For almost every k, each easily computed algorithm equivalent D k to is computationally infeasible to derive given E k k, it easy to come up with the pair h D k, E k i. Publicize E k, but keep D k to yourself! RANDOMIZED!

Suggestions 1.(useless) An invertible matrix E, D = E -1. (n 2 vs. n 3, at the time) 2.“One way compiler”. Public Key Distribution System: “Securely exchange a key over an insecure channel”. 3. Merkle. 4. The Diffie-Hellman key exchange.

The DH Key Exchange Everybody knows: q – a prime, g – a generator for Z * q A Selects x A 2 r Z* q. Sends m A = g x A mod q. Computes K = m B x A mod q. B Selects x B 2 r Z* q. Sends m B = g x B mod q. Computes K = m A x B mod q. K = g x A x B mod q. Secure, if discrete log takes  (q 1/2 )

Signature By public key cryptosystem! A function f is a one-way function if it is easy to compute f(x), but for almost every y it is “computationally infeasible to solve the equation y=f(x).” (“Polynomials offer an elementary example of one-way functions.” “One way functions are easy to devise.”) Just send - h m, D k (m)i. One Way

One Way Authentication Techniques: 1.Login: user picks PW, but sends f(PW). 2.Login revised: user picks PW, send f T (PW). At time t, user authenticates by sending f T-t (PW) (requires fast enumerations of f). 3. Select x 0 1,x 1 1,x 0 2,x 1 2,…,x 0 N,x 1 N. Compute their images under f: y 0 1, y 1 1, y 0 2, y 1 2,…,y 0 N,y 1 N. Publicize these 2N images. Send the message m = m 1,m 2,…m N and x 1 m 1,x 2 m 2,…,x N m N

Insights “A cryptosystem which is secure against a known plaintext attack, can be used to produce a OWF”. Choose P 0 arbitrarily. Define: f(x) = S x (P 0 )

Insights (cont.) Trap-door OWF: a simply computed inverse exists, but given only f it is infeasible to find an inverse. Only possession of a trap-door information allows computing an inverse easily. (e.g. The random string used to produce E,D.) (A quasi-OWF: same definition, without the trap-door information.) Trap-door cipher: resists any cryptanalysis by anyone not in possession of a trap-door information. “A trap-door cryptosystem can be used to produce a public key distribution system”. A enciphers and publicize m, E k (m), B breaks the encryption.

Insights (cont.) Public Key Cryptosystem ) OW authentication. “Not conversly”. Public Key Cryptosystem ) Public Key Distribution System. “The converse does not appear to hold”. Public Key Cryptosystem ) Trap-door OWF. The converse – the function “must be invertible”

Connection to Complexity “The cryptanalytic difficulty of a system whose encryption and decryption operations can be done in P time cannot be greater than NP”. Nondeterministically, choose the key (maybe also the message). Verify by encryption / decryption in polytime. “The general cryptanalytic problem is NP-complete.” By Constructing a OWF from the Knapsack Problem.

The Knapsack Problem Given {a 1, a 2, …, a n }, and x2{0,1} n, computing y=f(x)=  i a i x i is easy, yet finding a subset of {a i } i that sums up to a given y is NP-complete. Problems: 1. f cannot be degenerate. 2. f cannot be super-increasing. Is f hard on average? …Probably not. Knapsack based encryption – given `77 [Merkle, Hellman], broken `82 [Shamir] and later others.

Historical Note From Caesar cipher to WWII. References – a book [~ 1200 pages]: D. Kahn, The Codebreakers, The Story of Secret Writing. Emphasize the following point: “innovation has come primarily from the amateurs”. “We hope this will inspire others to work in this facinating area in which participation has been discouraged in the recent past by a nearly total government monopoly.”

And what happened to Diffie & Hellman? Diffie didn't finish his degree, left to work in cryptography oriented companies. Works till today. Was awarded doctorate in 1992 (!) by the Swiss Federal IT. Hellman became a prof. in `79 and is currently retired. Both – highly respected, highly awarded.

After DH: Practical Public Keys Several suggestions, including the knapsack, and McEliece (ECC of invertible matrix and permutation + a random small mistake) – RSA! 1979 – Rabin (RSA with squaring) Mathematical proofs of security: – Blum; Goldwasser & Micali.