Linear Momentum and Collisions

Slides:



Advertisements
Similar presentations
Momentum-Impulse Theorem Collision:
Advertisements

Chapter 10: Linear Momentum & Collisions
Chapter 7 Impulse and Momentum. Impulse and momentum play important roles in sports.
Chapter 9 Linear Momentum and Collisions. Linear momentum Linear momentum (or, simply momentum) of a point-like object (particle) is SI unit of linear.
Linear Impulse − Momentum
Impulse, Momentum and Collisions
Chapter 7 - Giancoli Momentum and Impulse.
Momentum and Collisions
1. Momentum: By Momentum, we mean “Inertia in Motion” or more specifically, the mass of an object multiplied by its velocity. Momentum = mass × velocity.
Conservation of Momentum
Chapter 6 Momentum and Collisions 1. Momentum and Impulse 2. Conservation of Momentum 3. 1D Collisions 4. 2D Collisions.
Momentum and Energy in Collisions. A 2kg car moving at 10m/s strikes a 2kg car at rest. They stick together and move to the right at ___________m/s.
Chapter 7 Impulse and Momentum.
Dr. Jie Zou PHY 1151G Department of Physics1 Chapter 9 Linear Momentum and Collisions.
Momentum Conservation
AP Physics Impulse and Momentum. Which do you think has more momentum?
Momentum is Conserved in an isolated system.
Dr. Jie Zou PHY 1151G Department of Physics1 Chapter 9 Linear Momentum and Collisions (Cont.)
Chapter 4 Impulse and Momentum.
Fri. Feb. 25th1 PHSX213 class Class stuff –Questions ? Conservation of Linear Momentum Collision terminology Collisions.
Chapter 7: Linear Momentum CQ: 2 Problems: 1, 7, 22, 41, 45, 47. Momentum & Impulse Conservation of Momentum Types of Collisions 1.
AP Physics I.D Impulse and Momentum. 7.1 Impulse-Momentum Theorem.
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
Momentum and Impulse Review 1.The velocity of a moving mass is called? ans: momentum 2.Force applied in a period of time is called? ans: impulse 3. The.
Momentum Inertia in Motion Definition of Momentum Momentum is the product of mass and velocity. Momentum Mass Velocity.
Today: Momentum – chapter 9 11/03 Finish momentum & review for exam 11/8 Exam 2 (5 – 8) 11/10 Rotation 11/15 Gravity 11/17 Waves & Sound 11/22 Temperature.
1 PPMF102– Lecture 3 Linear Momentum. 2 Linear momentum (p) Linear momentum = mass x velocity Linear momentum = mass x velocity p = mv p = mv SI unit:
Chapter 6 Momentum and Impulse
Momentum and Its Conservation LEQ: What is Momentum?
Chapter 7 Impulse and Momentum. There are many situations when the force on an object is not constant.
Chapter 7 Linear Momentum. MFMcGraw-PHY 1401Chap07b- Linear Momentum: Revised 6/28/ Linear Momentum Definition of Momentum Impulse Conservation.
Chapter 6 Momentum and Impulse. Momentum The product of an object’s mass and velocity: p = mv Momentum, p, and velocity, v, are vector quantities, meaning.
Chapter 7: Linear Momentum Linear momentum is: – the product of mass and velocity – Represented by the variable p – Equal to mv, where m is the mass of.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Chapter 7 Impulse and Momentum.
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse of a force is the product of the average force and.
Chapter 7 Impulse and Momentum. Impulse, J The impulse J of a force is the product of the average force and the time interval  t during which the force.
Ch 7. Impulse and Momentum
Momentum and Collisions Linear Momentum The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity.
Linear Momentum Problems MC Questions Linear Momentum 07 LH.
The force on an object may not be constant, but may vary over time. The force can be averaged over the time of application to find the impulse.
Chapter 7 – Momentum Inertia in motion!!! An object in motion will stay in motion until a force acts to stop it. Momentum = mass x velocity (kg * m/s)
Momentum and Collisions Momentum and Impulse  The momentum of an object is the product of its mass and velocity: p=mv  Units of momentum: kg·m/s.
We will be playing Jeopardy today! Please come up with a team name and write it on the board above your team number.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kgm/s A quantity used in collisions So a small object.
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant.
Phys211C8 p1 Momentum everyday connotations? physical meaning the “true” measure of motion (what changes in response to applied forces) Momentum (specifically.
Chapter 7 Impulse and Momentum. You are stranded in the middle of an ice covered pond. The ice is frictionless. How will you get off?
Chapter 7 Impulse and Momentum
Would you rather be hit by a tennis ball or a bowling ball?
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
Physics Chapter 6: Momentum and Collisions.  Force is Not Always Constant  Application of Force May Vary with Time.
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant.
Ying Yi PhD Chapter 7 Impulse and Momentum 1 PHYS HCC.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 9 Physics, 4 th Edition James S. Walker.
Chapter 6. When objects collide their motion changes and this is the result of a concept called momentum. Momentum = mass x velocity p = mv kgm/s or Ns.
Chapter 8 Momentum, Impulse and Collisions
Chapter 7 Impulse and Momentum.
Momentum Conservation
Topics for Today Lab workbooks are available in the book store
Law of Conservation of Momentum
Chapter 7 Impulse and Momentum.
Now consider two tennis balls……
Chapter 7 Impulse and Momentum.
Chapter 7 Impulse and Momentum.
Homework: WS: momentum & impulse
Impulse and Momentum Chapter 7.
APPC Unit 7: Momentum and Impulse
Presentation transcript:

Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Dr. Jie Zou PHY 1151G Department of Physics

Dr. Jie Zou PHY 1151G Department of Physics Linear Momentum Definition of Linear Momentum, Linear momentum p is defined as the product of the mass m and velocity v of an object. SI unit: kg·m/s. Example: A 1180-kg car drives along a city street at 30.0 mi/h (13.4 m/s). What is the magnitude of the car’s momentum? Using p = mv, we find p = (1800 kg)(13.4 m/s) = 15,800 kg·m/s. Dr. Jie Zou PHY 1151G Department of Physics

Dr. Jie Zou PHY 1151G Department of Physics Impulse Definition of impulse I: Impulse is defined to be the average force Fav times the length of application time, t, SI unit: N·s = (kg·m/s2).s = kg·m/s, the same unit as the units of momentum. Impulse is the change in momentum: I = Fav∆t = ∆p Dr. Jie Zou PHY 1151G Department of Physics

Dr. Jie Zou PHY 1151G Department of Physics Example A batter hits a ball, sending it back toward the mound. The mass of the baseball is 0.145 kg. The ball was approaching the batter with a speed of 90.0 mi/h and headed toward the pitcher at 60 mi/h after the batter hit the ball. If the ball and bat were in contact for 1.20 ms, what is the average force exerted by the bat? Dr. Jie Zou PHY 1151G Department of Physics

Conservation of Linear Momentum Conservation of momentum for a system of objects: If the net external force acting on a system is zero, its net (total) momentum is conserved. That is, It is important to note that this statement applies only to the net momentum of a system, not to the momentum of each individual object. Internal and external forces: Internal forces: forces acting between objects within the system. External forces: forces applied from outside the system. Dr. Jie Zou PHY 1151G Department of Physics

Example: Conservation of Momentum Two groups of canoeists meet in the middle of a lake. After a brief visit, a person in canoe 1 pushes on canoe 2 with a force of 46 N to separate the canoes. If the mass of canoe 1 and its occupants is 130 kg, and the mass of canoe 2 and its occupants is 250 kg, find the momentum of each canoe after 1.20 s of pushing (neglect water resistance). Dr. Jie Zou PHY 1151G Department of Physics

Example 2: Conservation of Momentum When a bullet is fired from a rifle, the forces present in the horizontal direction are internal forces. The total momentum of the rifle-bullet system in the horizontal direction is conserved. The momentum of the system of the rifle and the bullet before firing is zero. After firing, the net momentum of the system is still zero. Dr. Jie Zou PHY 1151G Department of Physics

Dr. Jie Zou PHY 1151G Department of Physics Collisions Collisions: By a collision we mean a situation in which two objects strike one another, and in which the net external force is either zero or negligibly small. During a collision, the total momentum of a system is conserved. The system’s kinetic energy is not necessarily conserved. Dr. Jie Zou PHY 1151G Department of Physics

Inelastic and Elastic Collisions Elastic collisions: after a collision, the final kinetic energy of the system is equal to the initial kinetic energy, Kf = Ki. Inelastic collisions: collisions in which the kinetic energy is not conserved, Kf  Ki. Completely inelastic collisions: When objects stick together after colliding, the collision is completely inelastic. Dr. Jie Zou PHY 1151G Department of Physics

Example: Completely Inelastic Collisions Ballistic pendulum: In a ballistic pendulum, an object of mass m is fired with an initial speed v0 at the bob of a pendulum. The bob has a mass M, and it suspended by a rod of negligible mass. After the collision, the object and the bob stick together and swing through an arc, eventually gaining a height h. Find the height h in terms of m, M, v0 and g. Dr. Jie Zou PHY 1151G Department of Physics

Example: Elastic Collisions Consider a head-on collisions of two carts on an air track. The carts are provided with bumpers that give an elastic bounce when the carts collide. Let’s suppose that initially cart 1 is moving to the right with a speed v0 toward cart 2, which is at rest. If the masses of the carts are m1 and m2, respectively, what will be the speed of cart 1 and cart 2 after the collisions? Dr. Jie Zou PHY 1151G Department of Physics

Dr. Jie Zou PHY 1151G Department of Physics Derivation In the previous example, both momentum and kinetic energy of the system are conserved: Momentum conservation: m1v0 = m1v1,f + m2v2, f Kinetic energy conservation: (1/2)m1v02 = (1/2)m1v1,f2 + (1/2)m2v2,f2 Algebra yields the following results: Dr. Jie Zou PHY 1151G Department of Physics

Elastic collisions in 2D An example: Consider the collision of two 7.00-kg curling stones. One stone is at rest initially, the other approaches with a speed v1,i = 1.50 m/s. The collision is not head-on, and after the collision, stone 1 moves with a speed of v1,f = 0.610 m/s in a direction 66.0 away from the initial line of motion. What is the speed and direction of stone 2? Answer: v2,f = 1.37 m/s in a direction of 24.0 Dr. Jie Zou PHY 1151G Department of Physics

Dr. Jie Zou PHY 1151G Department of Physics Homework Chapter 9, Page 267, Problems: # 2, 11, 17, 28, 31. Dr. Jie Zou PHY 1151G Department of Physics