Section 2 Union, Intersection, and Complement of Events, Odds

Slides:



Advertisements
Similar presentations
Lecture 18 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics.
Advertisements

Probability Probability Principles of EngineeringTM
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
1 Press Ctrl-A ©G Dear2009 – Not to be sold/Free to use Tree Diagrams Stage 6 - Year 12 General Mathematic (HSC)
Basic Terms of Probability Section 3.2. Definitions Experiment: A process by which an observation or outcome is obtained. Sample Space: The set S of all.
7 Probability Experiments, Sample Spaces, and Events
Mathematics.
Union, Intersection, Complement of an Event, Odds
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
1 1 PRESENTED BY E. G. GASCON Introduction to Probability Section 7.3, 7.4, 7.5.
Chapter 4 Using Probability and Probability Distributions
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 4-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Fundamentals of Probability
Chapter 8 Probability Section R Review. 2 Barnett/Ziegler/Byleen Finite Mathematics 12e Review for Chapter 8 Important Terms, Symbols, Concepts  8.1.
Probability.
EXIT NEXT Click one of the buttons below or press the enter key BACKTOPICSProbability Mayeen Uddin Khandaker Mayeen Uddin Khandaker Ph.D. Student Ph.D.
Chapter 3 Section 3.2 Basic Terms of Probability.
Nor Fashihah Mohd Noor Institut Matematik Kejuruteraan Universiti Malaysia Perlis ІМ ќ INSTITUT MATEMATIK K E J U R U T E R A A N U N I M A P.
College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson.
College Algebra Sixth Edition James Stewart Lothar Redlin Saleem Watson.
S.CP.A.1 Probability Basics. Probability - The chance of an event occurring Experiment: Outcome: Sample Space: Event: The process of measuring or observing.
Probability The calculated likelihood that a given event will occur
UNIT 6 – PROBABILITY BASIC PROBABILITY. WARM UP Look through your notes to answer the following questions Define Sample Set and describe the sample set.
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
Chapter 3 Probability Larson/Farber 4th ed. Chapter Outline 3.1 Basic Concepts of Probability 3.2 Conditional Probability and the Multiplication Rule.
Section 2 Union, Intersection, and Complement of Events, Odds
Chapter 12 Probability © 2008 Pearson Addison-Wesley. All rights reserved.
Sixth lecture Concepts of Probabilities. Random Experiment Can be repeated (theoretically) an infinite number of times Has a well-defined set of possible.
© 2010 Pearson Education, Inc. All rights reserved Chapter 9 9 Probability.
SECTION 11-2 Events Involving “Not” and “Or” Slide
Unit 4 Section 3.1.
Math 145 September 18, Terminologies in Probability  Experiment – Any process that produces an outcome that cannot be predicted with certainty.
Sample Spaces, Subsets and Basic Probability
Probability 9.8. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Definition: Experiment Any activity with an unpredictable results.
No Warm-Up today. You have a Quiz Clear your desk of everything but a calculator and something to write with.
Math 1320 Chapter 7: Probability 7.1 Sample Spaces and Events.
Chapter 10 PROBABILITY. Probability Terminology  Experiment: take a measurement Like flipping a coin  Outcome: one possible result of an experiment.
1 What Is Probability?. 2 To discuss probability, let’s begin by defining some terms. An experiment is a process, such as tossing a coin, that gives definite.
Virtual University of Pakistan Lecture No. 18 of the course on Statistics and Probability by Miss Saleha Naghmi Habibullah.
Essential Ideas for The Nature of Probability
Terminologies in Probability
CHAPTER 5 Probability: What Are the Chances?
Chapter 11 Probability.
What Is Probability?.
Copyright © 2016, 2013, and 2010, Pearson Education, Inc.
PROBABILITY AND PROBABILITY RULES
Copyright © 2016, 2013, and 2010, Pearson Education, Inc.
Basic Probability CCM2 Unit 6: Probability.
Math 145 September 25, 2006.
Basic Probability CCM2 Unit 6: Probability.
Sample Spaces, Subsets and Basic Probability
Warm Up Which of the following are combinations?
Terminologies in Probability
Lesson 10.1 Sample Spaces and Probability
Terminologies in Probability
Terminologies in Probability
Combination and Permutations Quiz!
Digital Lesson Probability.
Terminologies in Probability
Pencil, red pen, highlighter, GP notebook, textbook, calculator
7.2 Union, intersection, complement of an event, odds
Additional Rule of Probability
Math 145 June 26, 2007.
Terminologies in Probability
Math 145 February 12, 2008.
Sample Spaces, Subsets and Basic Probability
Terminologies in Probability
Presentation transcript:

Section 2 Union, Intersection, and Complement of Events, Odds Chapter 8 Probability Section 2 Union, Intersection, and Complement of Events, Odds

Objectives for Section 8.2 Union, Intersection, Complement of Events; Odds The student will be able to determine the union and intersection of events. The student will be able to determine the complement of an event. The student will be able to determine the odds of an event. The student will be able to solve applications of empirical probability. Barnett/Ziegler/Byleen Finite Mathematics 12e

Union, Intersection, Complement of Events; Odds In this section, we will develop the rules of probability for compound events (more than one simple event) and will discuss probabilities involving the union of events as well as intersection of two events. Barnett/Ziegler/Byleen Finite Mathematics 12e

Union and Intersection of Events If A and B are two events in a sample space S, then the union of A and B, denoted by A  B, and the intersection of A and B, denoted by A  B, are defined as follows: A  B = {e  S | e  A or e  B} A  B = {e  S | e  A and e  B} Barnett/Ziegler/Byleen Finite Mathematics 12e

Number of Events in the Union The number of events in the union of A and B is equal to the number in A plus the number in B minus the number of events that are in both A and B. Sample space S n(A  B) = n(A) + n(B) – n(A  B) Barnett/Ziegler/Byleen Finite Mathematics 12e

Addition Rule If you divide both sides of the equation by n(S), the number of simple events in the sample space, we can convert the equation to an equation of probabilities: Barnett/Ziegler/Byleen Finite Mathematics 12e

Example of Addition Rule A single card is drawn from a deck of cards. Find the probability that the card is a jack or club. Set of Jacks Set of Clubs Jack and Club (jack of Clubs) Barnett/Ziegler/Byleen Finite Mathematics 12e

Example of Addition Rule A single card is drawn from a deck of cards. Find the probability that the card is a jack or club. Set of Jacks Set of Clubs Jack and Club (jack of Clubs) P(J or C) = P(J) + P(C) – P(J and C) Barnett/Ziegler/Byleen Finite Mathematics 12e

Union of Mutually Exclusive Events A single card is drawn from a deck of cards. Find the probability that the card is a king or a queen. Kings Queens Barnett/Ziegler/Byleen Finite Mathematics 12e

Union of Mutually Exclusive Events A single card is drawn from a deck of cards. Find the probability that the card is a king or a queen. The events King and Queen are mutually exclusive. They cannot occur at the same time. So the probability of King and Queen is zero. Kings Queens 4/52 + 4/52 – 0 = 8/52 = 2/13 Barnett/Ziegler/Byleen Finite Mathematics 12e

Mutually Exclusive Events If A and B are mutually exclusive then The intersection of A and B is the empty set. B A Barnett/Ziegler/Byleen Finite Mathematics 12e

Using a Table to List Outcomes of an Experiment Three coins are tossed.  Assume they are fair coins.  Tossing three coins is the same experiment as tossing one coin three times. There are two outcomes on the first toss, two outcomes on the second toss and two outcomes on toss three. Use the multiplication principle to calculate the total number of outcomes: (2)(2)(2) = 8 Each row of the table consists of a simple event of the sample space. The indicated row, for instance, illustrates the outcome ({heads, heads, tails}, in that order.) h t Barnett/Ziegler/Byleen Finite Mathematics 12e

Using a Table (continued) To find the probability of at least two tails, we mark each row (outcome) that contains two tails or three tails and divide the number of marked rows by 8 (number in the sample space) Since there are four outcomes that have at least two tails, the (theoretical) probability is 4/8 or ½ . h t Barnett/Ziegler/Byleen Finite Mathematics 12e

Example Two dice are tossed. What is the probability of a sum greater than 8, or doubles? Barnett/Ziegler/Byleen Finite Mathematics 12e

Example Solution Two dice are tossed. What is the probability of a sum greater than 8, or doubles? P(S > 8 or doubles) = P(S > 8) + P(doubles) – P(S > 8 and doubles) = 10/36 + 6/36 – 2/36 = 14/36 = 7/18. (1,1), (1,2), (1,3), (1,4), (1,5) (1,6) (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) Barnett/Ziegler/Byleen Finite Mathematics 12e

Complement of an Event Suppose that we divide a finite sample space S = {e1,…, en} into two subsets E and E’ such that E  E’ = . That is, E and E’ are mutually exclusive, and E  E’ = S. Then E’ is called the complement of E relative to S. Thus, E’ contains all the elements of S that are not in E, as below. S E’ E Barnett/Ziegler/Byleen Finite Mathematics 12e

Complement Rule Many times it is easier to compute the probability that A won’t occur, then the probability of event A: Example: What is the probability that when two dice are tossed, the number of points on each die will not be the same? Barnett/Ziegler/Byleen Finite Mathematics 12e

Complement Rule Many times it is easier to compute the probability that A won’t occur, then the probability of event A: Example: What is the probability that when two dice are tossed, the number of points on each die will not be the same? This is the same as saying that doubles will not occur. Since the probability of doubles is 6/36 = 1/6, then the probability that doubles will not occur is 1 – 6/36 = 30/36 = 5/6. Barnett/Ziegler/Byleen Finite Mathematics 12e

Odds In certain situations, such as the gaming industry, it is customary to speak of the odds in favor of an event E and the odds against E. The definitions are Odds in favor of event E = Odds against E = Barnett/Ziegler/Byleen Finite Mathematics 12e

Odds (continued) Example: Find the odds in favor of rolling a seven when two dice are tossed. Barnett/Ziegler/Byleen Finite Mathematics 12e

Odds (continued) Example: Find the odds in favor of rolling a seven when two dice are tossed. Solution: The probability of a sum of seven is 6/36. The probability of the complement is 30/36. So, = Barnett/Ziegler/Byleen Finite Mathematics 12e

Empirical Probability Example The data on the next slide was obtained from a random survey of 1,000 residents of a state. The participants were asked their political affiliations and their preferences in an upcoming gubernatorial election (D = Democrat, R = Republican, U = Unaffiliated. ) If a resident of the state is selected at random, what is the empirical probability that the resident is not affiliated with a political party or has no preference? Barnett/Ziegler/Byleen Finite Mathematics 12e

Empirical Probability Example (continued) Barnett/Ziegler/Byleen Finite Mathematics 12e

Empirical Probability Example Solution P(unaffiliated or has no preference) = P(unaffiliated) + P(has no preference) – P(unaffiliated and has no preference) = Barnett/Ziegler/Byleen Finite Mathematics 12e

Law of Large Numbers In mathematical statistics, an important theorem called the law of large numbers is proved. It states that the approximate empirical probability can be made as close to the actual probability as we please by making the sample sufficiently large. Barnett/Ziegler/Byleen Finite Mathematics 12e

Barnett/Ziegler/Byleen Finite Mathematics 12e

Barnett/Ziegler/Byleen Finite Mathematics 12e