Phase separation effects in diluted magnetic semiconductors collaborators: T. Andrearczyk, P. Kossacki, J. Jaroszyński, M. Sawicki – Warsaw F. Matsukura,

Slides:



Advertisements
Similar presentations
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Advertisements

Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.” Hole concentration.
Diluted Magnetic Semiconductors Diluted Magnetic Semoconductor (DMS) - A ferromagnetic material that can be made by doping of impurities, especially transition.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
4. Disorder and transport in DMS, anomalous Hall effect, noise
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Spintronics = Spin + Electronics
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Jairo Sinova Texas A &M University Support: References: Jungwirth et al Phys. Rev. B 72, (2005) and Jungwirth et al, Theory of ferromagnetic (III,Mn)V.
Lecture Jan 31,2011 Winter 2011 ECE 162B Fundamentals of Solid State Physics Band Theory and Semiconductor Properties Prof. Steven DenBaars ECE and Materials.
School of Physics and Astronomy, University of Nottingham, UK
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
Sputtered ZnO based DMS thin films for nanoscale spintronics devices Background & Introduction The wurtzite transparent semiconductor ZnO was predicted.
Magnetism III: Magnetic Ordering
Jason Kaszpurenko Journal Club Feb. 3, 2011 Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing Alberi, et all, Phys.
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
2. Magnetic semiconductors: classes of materials, basic properties, central questions  Basics of semiconductor physics  Magnetic semiconductors Concentrated.
Study on the Diluted Magnetic Semiconductors QSRC, Dongguk University
Ferromagnetic Semiconductors Gergely Zaránd Budapest Univ. Technology Collaborators: Greg Fiete (Santa Barbara) Boldizsár Jankó (Notre Dame) Pawel Redlinski.
Institute of Physics ASCR
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
Magic triangle Materials science epitaxy, self organized growth organic synthesis implantation, isotope purification atom and molecule manipulation nanolithography,
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Yan Wu 1, John DiTusa 1 1 Department of Physics and Astronomy, Louisiana State University Magnetic and transport properties of Fe 1-y Co y Si near insulator-to-metal.
Controlling the Curie temperature in the ferromagnetic semiconductor (Ga,Mn)As through location of Fermi level in the impurity band Margaret Dobrowolska,
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
DMS: Basic theoretical picture
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
Dynamics of collective spin excitations in n-doped CdMnTe quantum wells M. Vladimirova, P. Barate, S. Cronenberger, D. Scalbert Groupe d'Etude des Semi-conducteurs,
Complexity in Transition-Metal Oxides and Related Compounds A. Moreo and E. Dagotto Univ. of Tennessee, Knoxville (on leave from FSU, Tallahassee) NSF-DMR
Magnetism in diluted semiconductors I- Introduction. II- Theory for disordered Heisenberg models. III- Ab initio based studies for diluted magnetic semiconductors.
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
ELECTRON AND PHONON TRANSPORT The Hall Effect General Classification of Solids Crystal Structures Electron band Structures Phonon Dispersion and Scattering.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
전이금속이 포함된 GaN의 전자구조 및 자기적 특성해석
Unbiased Numerical Studies of Realistic Hamiltonians for Diluted Magnetic Semiconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee,
Semiconductors with Lattice Defects
Diluted Magnetic Semiconductors
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
SPINTRONICS AND FERROMAGNETIC SEMICONDUCTORS Tomasz Dietl, Warsaw.
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
PHYSICAL ELECTRONICS ECX 5239 PRESENTATION 01 PRESENTATION 01 Name : A.T.U.N Senevirathna. Reg, No : Center : Kandy.
, KITS, Beijing  Numerical study of electron correlation effects in spintronic materials Bo Gu (顾波) Advanced Science Research Center (ASRC) Japan.
Dilute moment ferromagnetic semicinductors for spintronics
Tomasz Dietl Laboratory for Cryogenic and Spintronic Research,
Conductivity Charge carriers follow a random path unless an external field is applied. Then, they acquire a drift velocity that is dependent upon their.
Hyperfine interaction studies in Manganites
S.-C. Lee*, K.-R. Lee, and K.-H. Lee Computational Science Center
Presentation transcript:

Phase separation effects in diluted magnetic semiconductors collaborators: T. Andrearczyk, P. Kossacki, J. Jaroszyński, M. Sawicki – Warsaw F. Matsukura, H. Ohno – Sendai K. Edmonds, C.T. Foxon, B.L. Gallagher, K.Y. Wang – Nottingham J. Cibert, D. Ferrand – Grenoble G. Bauer, A. Bonanni, W. Jantsch – Linz D. Kechrakos, N. Papanikolaou, K. N. Trohidou -- Athens support: Ohno Semiconductor Spintronics ERATO Project of JST NANOSPIN -- EC projects Humboldt Foundation Tomasz DIETL Institute of Physics, Polish Academy of Sciences Institute of Theoretical Physics, Warsaw University

Introduction

Ga 1-x Mn x As: resistance vs. temperature and Curie temperature vs. x ferromagnetism on both sides of metal-insulator transitions ferromagnetism disappears in the absence of holes Matsukura et al. (Tohoku) PRB’98 III-V DMS

Effect of acceptor doping on magnetic susceptibility in Zn 1-x Mn x Te:P Sawicki et al. (Warsaw) pss’02  -1 vs. T ferromagnetism driven by hole doping competition between intrinsic short-range AFM and hole-induced long-range FM II-VI DMS

Ferromagnetic temperature in p-(Zn,Mn)Te Ferrand et al. (Grenoble, Warsaw) PRB’01 Sawicki et al. (Warsaw) pss’02 ferromagnetism on both sides of metal-insulator transition

1/  Where are we? Wang/ Sawicki (Nottingham, Warsaw)ICPS’04 remanent magnetisation and 1/  vs. T hysteresis loops M REM T C = 173 K T C   CW

Semiconductor materials showing hysteresis and spontaneous magnetisation at 300 K wz-c- (Ga,Mn)N, (In,Mn)N, (Al,Mn)N, (Ga,Cr)N, (Al,Cr)N (Ga,Fe)N (Ga,Gd)N, (Ga,Eu)N (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb, (Ga,Mn)P:C (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O, (Zn,Fe,Cu)O, (Zn,Cu)O (Zn,Cr)Te (Ti,Co)O 2, (Ti,V)O 2, (Ti,Cr)O 2, (Sn,Co)O 2, (Sn,Fe)O 2, (Hf,Co)O 2 (Cd,Ge,Mn)P 2, (Zn,Ge,Mn)P 2, (Cd,Ge,Mn)As 2, (Zn,Sn,Mn)As 2 (Ge,Mn), (Ge,Cr), (Ge,Mn,Fe) (La,Ca)B 6, C, C 60, HfO 2, (Ga,Gd)N – materials in which magnetic moment is claimed to do not come from 3d or 4f shell will not be discussed cf. G. Bouzerar

SQUID studies of DMS in Warsaw M. Sawicki et al.: wz-c- (Ga,Mn)N, (Ga,Fe)N (Ga,Mn)As (Zn,Mn)Te:N, P (Cd,Mn)Te, (Cd,Mn)Se (Cd,Cr)Te, (Zn,Cr)Se (Zn,Mn)O, (Zn,Co)O, (Zn,Cr)O

Today’s talk „low” T C ferro DMS -- metallic side -- insulator side – electronic phase separation „high” T C ferro DMS – chemical phase separation cf. A. Moreno

Metallic side of metal-to-insulator transition

p-d Zener/RKKY model of hole-controlled ferromagnetism in DMS Driving force: lowering of the hole energy due to redistribution between hole spin subbands split by p-d exchange interaction T.D. et al.,’97- Jungwirth et al. (Austin/Prague) ’99- k EFEF

p-d Zener/RKKY model of hole-controlled ferromagnetism in DMS Driving force: lowering of the hole energy due to redistribution between hole spin subbands split by p-d exchange interaction,  ~  M T.D. et al.,’97- MacDonald et al. (Austin/Prague) ’99- No adjustable parameters T C ~  2  (s) DOS Essential ingredient: Complexity of the valence band structure has to be taken into account M k EFEF

Mn-based p-type DMS to which p-d Zener model has been found to apply Expl.: Tohoku, Tokyo, Grenoble, Wuerzburg, PSU, Notre Dame, UCSB, Nottingham, … x Mn = 5% p = 3.5x10 20 cm -3 T C   CW T C (p,x) consistent with p-d Zener model not double exchange

Insulator side of metal-to-insulator transition Anderson-Mott localization Small hole concentration r s > 2.4 because of either: -- small acceptor concentration -- large compensation -- depletion by gates -- depletion at surfaces and interfaces e.g. TAMR devices of (Ga,Mn)AS Ruster et al. (Wuerzburg) PRL’05 Giddings et al. (Hitachi, Nottingham) PRL’05

Insulator side of metal-to-insulator transition Suggested model: percolation of bound magnetic polarons Bhatt et al. (Princeton) PRL’02; Das Sarma et al., PRL’02,’04,.... p-type (II,Mn)VI (III,Mn)V

Resistivity and magnetisation in (Ga,Mn)As 4 K Co-existence of ferromagnetic and paramagnetic components in non-metallic samples F. Matsukura et al..(Tohoku) PRB ’98, SSC’97

Temperature (K) Resistivity (Ohm cm) B = 0 B = 11 T (Zn,Mn)Te:N x = 3.8% p = 3x10 19 cm -3 Collosal negative magnetoresistance on insulator side of MIT Ferrand et al. (Grenoble, Warsaw) PRB’02

Temperature (K) Resistivity (Ohm cm) B = 0 B = 11 T (Zn,Mn)Te:N x = 3.8% p = 3x10 19 cm -3 Collosal negative magnetoresistance on insulator side of MIT Ferrand et al. (Grenoble, Warsaw) PRB’02 Katsumoto et al. (Tokyo) pss’98 Reminiscent to CMR oxides

Ferromagnetism on insulator side of MIT -- competing models Percolation of bound magnetic polarons Ferromagnetic metallic-like regions embeded in insulating paramagnetic matrix  electronic nanoscale phase separation To tell the model: inelastic neutron scattering Kepa et al. (Warsaw, NIST) PRL’03 search for collosal MR in modulation-doped quantum wells, where no BMP are expected Jaroszynski et al. (Warsaw, NHMFL) cond-mat/0509 Monte Carlo + Schroedinger eq. with magnetic disorder Dechrakos et al. (Athenes, Warsaw) PRL’05 cf. E.L. Nagaev, E. Dagotto et al.

Probing competing AF and FM interactions by inelastic neutron scattering in p-(Zn,Mn)Te Kępa et al. (Warsaw, NIST) PRL’03 inelastic neutron scattering of n.n. Mn pairs large single crystals of Zn 0.95 Mn 0.05 Te:P p = 5x10 18 cm -3, T CW = 2 K Insulator side of the MIT Zn 0.95 Mn 0.05 Te H int = -2(J AF + J h )S i S j J AF < 0 super-exchange J h > 0 hole-induced

Hole induced contribution empty dots - no holes, full dots – with holes  E = 2J h = 0.03  meV  E RKKY = meV  E BMP = 0.12 meV

Resistivity vs. carrier density at various T in (Cd,Mn)Te/(Cd,Mg)Te:I quantum well Jaroszynski et al. (Warsaw, NHMFL) cond-mat/0509 submitted to PRL Electron density (cm -2 )

Resistivity vs. carrier density at various T in (Cd,Mn)Te/(Cd,Mg)Te:I quantum well Jaroszynski et al. (Warsaw, NHMFL) cond-mat/0509 submitted to PRL Electron density (cm -2 )

Resistivity vs. carrier density at various T in (Cd,Mn)Te/(Cd,Mg)Te:I quantum well Electron density (cm -2 ) Interpretation: nanoscale electronic phase separation into metallic ferromagnetic regions embeded in isolating paramagnetic matrix

Localization length  >> r s Ferromagnetic coupling via weakly-localised holes At the distance between Mn ions wave function can be regarded as extended =>only part of the spins contribute to the ferromagnetic signal Random distribution of acceptors and spins  Metallic and ferromagnetic lakes embedded in insulating matrix

High T C ferro DMS

Experimental indications of room temperature ferromagnetism in (Zn,Cr)Te K. Ando et al., PRL’03

Effect of doping Ando et al.. (Tsukuba) PRL’03 Ozaki et al. (Tsukuba) APL’05

Ferromagnetism of (Ga,Mn)N – effect of doping Reed et al. (NCSU) APL’05 (Ga,Mn)N x = 0.2% T C >> 300 K (Ga,Mn)N, x = 0.2% T C  0 for Si doping (Ga,Mn)N:Si

GaAs + MnAs precipitates  depending on growth conditions precipitates or spinodal decomposition Moreno et al. (Berlin) JAP’02  control magnetic properties De Boeck et al. (IMEC) APL’96  enhance magnetooptical effects (MCD) Akinaga et al. (Tsukuba) APL’00; Shimizu et al. (Tokyo) APL’01  affect conductance and Hall effect  not seen in HRXRD Moreno et al. (Berlin) JAP’02 Heimbrodt et al. (Marburg) PRB’04 spinodal decomposition hex MnAs GaAs T C  320 K H (Oe) zb MnAs GaAs T C  350 K

Model for high T C DMS 1.DMS in question undergo spinodal decomposition into TM reach and TM poor phases that conserve the structure of host crystal [ (Ga,Mn)As (Ge,Mn) — TEM; (Ga,Mn)N -- synchrotron radiation microprobe Martinez-Criado et al.. (ESR, Schottky) APL’05] 2.TM reach phase is a high T C ferromagnetic metal or ferrimagnetic insulator, which accounts for spontaneous magnetisation at RT

Model for high T C DMS 1.DMS in question undergo spinodal decomposition into TM reach and TM poor phases that conserve the structure of host crystal [ (Ga,Mn)As (Ge,Mn) — TEM; (Ga,Mn)N -- synchrotron radiation microprobe Martinez-Criado et al.. (ESR, Schottky) APL’05 2.TM reach phase is a high T C ferromagnetic metal or ferrimagnetic insulator, which accounts for spontaneous magnetisation at RT 3. Because of Coulomb repulsion spinodal decomposition is blocked if TM is charged – TM charge state is controlled by co- doping with shallow impurities T.D., submitted to Nature Mat. Mn +3 EFEF GaN EFEF Mn +2 GaN:Si Cr +2 EFEF ZnTe EFEF Cr +3 ZnTe:N

SUMMARY Three classes of DMS showing ferromagnetic properties: 1. Magnetically uniform hole-controlled ferromagnetic DMS p-d Zener model + real v.b. structure 2. Magnetically non-uniform ferro DMS exhibiting electronic nanoscale phase separation driven by: -- quenched disorder: carrier density fluctuations on insulating side of MIT -- competition between FM and AFM interactions Griffiths phase (?) Monte Carlo simulations with random acceptor and spin distributions 3. Magnetically non -uniform ferromagnetic DMS exhibiting chemical nanoscale phase separation: -- annealed disorder (at growth temperature) -- controlled by magnetic ion charge state new method of self-organised growth of nanostructures

(La,Ca)MnO 3 DMS: interactions determine spatial distribution of both carriers and localized spins

END