Physics Opportunities with

Slides:



Advertisements
Similar presentations
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Advertisements

Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
Georg Raffelt, MPI Physics, Munich Neutrinos at the Forefront, Univ. de Lyon, 22–24 Oct 2012 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Supernova. Explosions Stars may explode cataclysmically. –Large energy release (10 3 – 10 6 L  ) –Short time period (few days) These explosions used.
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Prospect for detection of supernova neutrino NOW2014 Sep. 9 th, 2014 Otranto, Lecce, Italy 森俊彰 Takaaki Mori for the Super-Kamiokande Collaboration Okayama.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Melbourne Neutrino Theory Workshop, June ROLE OF DENSE MATTER IN COLLECTIVE NEUTRINO TRANSFORMATIONS Sergio Pastor (IFIC Valencia) in collaboration.
The neutrons detection involves the use of gadolinium which has the largest thermal neutron capture cross section ever observed. The neutron capture on.
Neutrino Physics - Lecture 3 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
周 顺 中科院高能所理论室 JUNO中微子天文和天体物理学研讨会 北京,
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
李玉峰 中科院高能所 JUNO中微子天文和天体物理学研讨会
Neutrinos from supernovae
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
M. Selvi – 17/09/04 – NOW 2004 – Supernova neutrino detection Supernova neutrino detection Marco Selvi Bologna University & INFN.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
M. Selvi – SN detection with LVD – NNN‘06 Supernova  detection with LVD Marco Selvi – INFN Bologna, Large Volume LNGS.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    
Coincident search for gravitational-wave and neutrino signals from core-collapse supernovae L. Cadonati (U Mass, Amherst), E. Coccia (LNGS and U Rome II),
Application of neutrino spectrometry
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
M. Selvi – 17 th June 2005 – Round Table in honour of prof. Koshiba e e x Supernova neutrino detection: present status and new ideas Marco Selvi Bologna.
Prospects of supernova neutrino observation by large detectors Hisakazu Minakata Tokyo Metropolitan University Hisakazu Minakata Tokyo Metropolitan University.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Solar Neutrino Results from SNO
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Chapter 13 Post Main Sequence Stellar Evolution. The Sun.
Cristina VOLPE (AstroParticule et Cosmologie -APC) Open issues in neutrino flavor conversion in media.
Low energy option for KM3NeT Phase 1? KM3NeT-ORCA (Oscillation Research with Cosmics in the Abyss) P. Coyle, Erlangen 23 June 2012.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Waseda univ. Yamada lab. D1 Chinami Kato
Supernova Neutrinos Physics Opportunities with Flavor Oscillations
Astrophysical Constraints on Secret Neutrino Interactions
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
neutrino flavor conversion in media
Neutrinos as probes of ultra-high energy astrophysical phenomena
The neutrino mass hierarchy and supernova n
Feasibility of geochemical galactic neutrino flux measurement
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

Physics Opportunities with Supernova Neutrinos 周 顺 中科院高能所理论室 中国科学技术大学交叉学科理论研究中心 合肥,2015-3-26

Outline Supernova Neutrinos Physics Opportunities Neutrino Mass Scale WDM Sterile Neutrinos Summary and Outlook

Galactic SN 1054 Distance: 6500 light years (2 kpc) Center: Neutron Star ( R~30 km) Progenitor : M ~ 10 solar masses Red:Optical (Hubble) Blue:X-Ray (Chandra)

Stellar Collapse and SN Explosion © Raffelt Hydrogen Burning Main-sequence star Helium-burning star Helium Burning Hydrogen

Stellar Collapse and SN Explosion © Raffelt Onion structure Degenerate iron core: r  109 g cm-3 T  1010 K MFe  1.5 Msun RFe  8000 km Collapse (implosion)

Stellar Collapse and SN Explosion Neutrino-driven Explosion © Raffelt Newborn Neutron Star ~ 50 km Proto-Neutron Star r ~ rnuc = 3  1014 g cm-3 T ~ 30 MeV Neutrino-driven Explosion

Stellar Collapse and SN Explosion © Raffelt Newborn Neutron Star ~ 50 km Proto-Neutron Star r ~ rnuc = 3  1014 g cm-3 T ~ 30 MeV Gravitational binding energy Eb  3  1053 erg  17% MSUN c2 This shows up as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy Neutrino luminosity Ln  3  1053 erg / 3 sec  3  1019 LSUN While it lasts, outshines the entire visible universe Neutrino cooling by diffusion

Supernova Neutrinos: Theoretical Prediction Kitaura, Janka & Hillebrandt astro-ph/0512065 Raffelt, 1996

Large Magellanic Cloud SN 1987A Supernova 1987A 23 February 1987 Sanduleak - 69 202 Large Magellanic Cloud SN 1987A Distance:165 000 light yrs (50 kpc) Center:Neutron Star (expected, but not found) Progenitor: M ~ 18 solar masses

Supernova Neutrinos: SN 1987A Arnett et al., ARAA 27 (1989) Hirata et al., PRD 38 (1988) 448

Supernova Neutrinos: SN 1987A Kamiokande-II (Japan): Water Cherenkov (2,140 ton) Clock Uncertainty ± 1 min Irvine-Michigan-Brookhaven (US): Water Cherenkov (6,800 ton) Clock Uncertainty ±50 ms Baksan LST (Soviet Union): Liquid Scintillator (200 ton) Clock Uncertainty +2/-54 s Mont Blanc: 5 events, 5 h earlier

Supernova Neutrinos: SN 1987A Jegerlehner, Neubig & Raffelt Assumptions: Thermal Equipart. Jegerlehner, Neubig & Raffelt astro-ph/9601111 Conclusions: Collapse Ave.Ener. Duration Eb [1053 ergs] Problems: 24 events by chance Spectral anti-νe Temperature [MeV]

Supernova Neutrinos: Astrophysics & Astronomy Explosion Mechanism:Neutrino-driven Explosion The prompt shock halted at 150 km, by disintegrating heavy nuclei Neutrinos deposit their energies via interaction with matter; 1 % neutrino energy leads to successful explosion Simulations in 1D & 2D for different progenitor masses observe explosions 3D simulation has just begun; but no clear picture (resolution, progenitors) for a review, Janka, 1211.1378

Supernova Neutrinos: Astrophysics & Astronomy For Optical Observations:SuperNova Early Warning System (SNEWS) Arnett et al., ARAA 27 (1989) http://snews.bnl.gov/ Super-K IceCube LVD Borexino Neutrinos arrive several hours before photons To alert astronomers several hours in advance Alert @BNL

Supernova Neutrinos: Astrophysics & Astronomy Gravitational waves from SN Explosions Locate the SN via neutrinos Tomàs et al., hep-ph/0307050 Müller, Rampp, Buras, Janka,& Shoemaker, astro-ph/0309833 “Towards gravitational wave signals from realistic core collapse supernova models” GWs from asymmetric neutrino emission Beacom & Vogel, astro-ph/9811350 n-tagging efficiency 95% CL half-cone opening angle None 90 % GWs from convective mass flows 7.8° 3.2° SK Bounce 1.4° 0.6° SK  30

Supernova Neutrinos: Elementary Particle Physics Neutrino Mass Bound:Time delay of massive particles G. Zatsepin, 1968 Kamiokande-II data Estimate: Take the first event A: (tA, EA) Take the last event B: (tB, EB) IMB data Assumptions: Instant. emission Diff. only from m Schramm, CNPP 17 (1987) 239

Supernova Neutrinos: Elementary Particle Physics Flavor Conversion & Matter Effects: Source ─ Prop. ─ Detector Wolfenstein, 78 Mikheyev&Smirnov, 85 Pantaleone, 92 Neutrino sphere Vacuum MSW Collective Matter Effects: Envelope Shock wave Earth matter Mass ordering High Matter Density: High interaction rate Flavors conserved

Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: collective effects (accretion phase) Left: Sketch of Collective effects Bottom: Inverted + Accretion Duan, Fuller&Qian, 1011.2799 Fogli, Lisi, Marrone&Mirizzi, 0707.1998

Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: collective effects (cooling phase) NH IH Note: compare between accretion and cooling results Dasgupta, Mirizzi, Tamborra&Tomàs, 1002.2943

Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: MSW effects in the SN envelope Dighe & Smirnov, hep-ph/9907423 Adiabatic for a ‘large’ 13 NH IH L – Resonance Res. for neutrinos Always adiabatic H – Resonance Res. for neutrinos (NH) Res. for antineutrinos (IH)

Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: MSW effects in the SN envelope for for for Primary fluxes (+ collective) Leaving the SN (+ Collective & MSW effects) Dighe & Smirnov, hep-ph/9907423 Dighe, Kachelriess, Raffelt & Tomàs, hep-ph/0311172 Normal Inverted sin2(213) ≳ 10-3 Mass ordering sin2(12) cos2(12) Case A B Survival probabilities

Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: including Earth Matter Effects Dighe&Smirnov, hep-ph/9907423 Lunardini & Smirnov, hep-ph/0106149 for a ‘large’ 13 If IH is determined from oscillation experiments,Earth matter effects indicate collective effects. NH: Matter Effects -antineutrinos IH: Matter Effects - neutrinos Collective Neutrino Oscillations (accretion phase) No Yes Mass Ordering sin2 13 survival Earth matter survival Earth matter NH ≳ 10-3 cos2 12 Yes cos2 12 Yes IH No

Supernova Neutrinos: Elementary Particle Physics Extra energy-loss channels: Bound on particle physics models ~ 50 km Proto-Neutron Star r ~ rnuc = 3  1014 g cm-3 T ~ 30 MeV If exotic particles can be produced and escape from the SN core, then the energy carried away by them should be at least smaller than that by neutrinos. Otherwise, the SN neutrino signal would be significantly reduced. Cooling via Neutrino Emission Exotic weakly-interacting particles The energy-loss argument has been applied to the SN 1987A, and restrictive bounds on particle physics models have been obtained: Axion,Majoron,keV sterile neutrino,……

SN  Detection: present and future experiments MiniBooNE (200) LVD (400) Borexino (100) Baksan (100) Super-Kamiokande (104) KamLAND (400) SN @10 kpc JUNO (104) Water / Ice Cherenkov Liquid Scintillator IceCube (106)

SN  Detection: present and future experiments 5-100 kton liquid Argon DUSEL LBNE 100 kton scale scintillator Hyper-K Memphys LENA JUNO HanoHano Megaton-scale water Cherenkov

Key Problem: where and When? © Raffelt (1) Estimate from SN statistics in other galaxies; (2) Only massive stars produce 26Al (with a half-life 7.2  105 years); (3) Historical SNe in the Milky Way; (4) No neutrino bursts observed by Baksan since June 1980

Key Problem: where and When?

SN Candidate: The Red Supergiant Betelgeuse (Alpha Orionis) Distance: 425 ly (130 pc) Type:Red Supergiant Mass:~ 18 solar masses Expected to end its life as SN explosion @ Super-K: 6 107 events

Detection of SN Neutrinos @JUNO 2015/1/10, Jiangmen, Guangdong Goal: to pin down  mass ordering Main Channels in LSD A typical SN @ 10 kpc

Neutrino Mass Bound: SN Model Kamiokande-II Data IMB Data Baksan Data Use the SN 1987A observations to extract the SN model param. Use all the information (ti Ei i ) Maximum likelihood Loredo & Lamb, astro-ph/0107260 Kam, IMB & Baksan Every Event Pagliaroli, Vissani, Costantini & Ianni, 0810.0466

Neutrino Mass Bound: SN Model Signal Events Pagliaroli, Vissani, Costantini & Ianni, 0810.0466 Neutrino Flux Parametrization Fit SN Model Parameters Accretion Phase Ma : initial mass Ta : initial e+ temp. a : accretion time Cooling Phase Rc : -sphere rad. Tc : initial temp. c : cooling time Cooling: Thermal distr. of anti-e,and exp. decay of luminosity; Accretion: Anti-e only from e+ +n,and thermal distr. of positrons

Neutrino Mass Bound: Events @JUNO JUNO: 20 kt (12% p) liquid scintillator IBD events @JUNO: N = 4300 Best-fit values for SN model & r=100 ms

Neutrino Mass Bound: Simulations 1. Generate n pairs of (t i , E i) according to R (t , E) Pagliaroli, Rossi-Torres &Vissani 1002.3349 @Super-K 2. Denote e+ as (t i , Eei) corresponding to (t i , E i) Better ? @JUNO 3. Label event by a relative time t i and energy Eei 4. Extract SN model parameters and m from data

Neutrino Mass Bound @ JUNO Fit for one single experiment 3000 simulations for JUNO 3000 simulations for Super-K Include numerical models, - systematic errors; Simulate a large number of experiments - stat. errors; Low-E, Early-t events help Jia-Shu Lu, Jun Cao, Yu-Feng Li, S.Z., 1412.7418

Robust evidence for Dark Matter Moore et al., 99’ Abundance of Cosmic Substructure Cold or Warm DM ?

Production of sterile neutrinos: Sterile Neutrinos of keV Masses Production of sterile neutrinos: Low matter density: neutrino flavor oscillations with matter effects High matter density: production & absorption via scattering processes Occupation-number formalism: Diagonal terms: just the usual occupation numbers Non-diagonal terms: encode the phase information Equations of motion: Mass terms and matter potentials

Two-flavor mixing case Sterile Neutrinos in a SN Core Two-flavor mixing case Bp Pp z y x Flavor polarization vectors rotate around magnetic fields Matter Effects Wolfenstein, 78’; Mikheyev, Smirnov, 85’ where the resonant energy is maximal mixing if E ~ Er cos 2θ

Sterile Neutrinos in a SN Core Weak-damping limit Oscillation length Mean free path Bp Pp z y x Neutrinos oscillate many times before a subsequent collision with nucleons

In the weak-damping limit Sterile Neutrinos in a SN Core In the weak-damping limit averaged over a period of oscillation Two independent parameters: occupation numbers fαp & fsp Simplified equations of motion: further simplification if sterile neutrinos escape from the SN core set fsp = 0 Lepton-number-loss rate Energy-loss rate

Tau-sterile neutrino mixing Sterile Neutrinos in a SN Core Tau-sterile neutrino mixing Initial conditions: Ye = 0.3, Yνe = 0.07, Yνμ=Yντ=0 the MSW resonance occurs in the antineutrino channel; asymmetry between tau neutrinos and antineutrinos. Simple bound in the ‘vacuum limit’: Er >> E Energy-loss rate Supernova Bound

Follow the time evolution of η and calculate the energy loss Energy-loss Rate and SN Bound Follow the time evolution of η and calculate the energy loss G. Raffelt, S.Z., 1102.5124

Summary and Outlook Neutrinos from next nearby supernova cannot be missed (a once-in-a-lifetime opportunity!) Physics opportunities with SN neutrinos: stellar collapse, explosion mechanism, collective flavor conversion, matter effects, neutrino mass ordering, absolute neutrino mass,… 104 neutrino events @ JUNO for a typical galactic SN; to improve neutrino mass bound, & other possibilities; A lot of theoretical works to do while waiting for a real SN