Substorm Activity during CME and CIR Driven Storms Smitha Thampi, Diwakar Tiwari, Ruigang Wang, Hui Zhang, Ling Qian Zhang, Yihua Zheng Tutor: Robert L.

Slides:



Advertisements
Similar presentations
Space Weather Effects over EGNOS Performance in the North of Europe 11 th SWW, Liege, 17 th November 2014 Presenter author: Pedro Pintor Authors: R. Roldán,
Advertisements

The Johns Hopkins University Applied Physics Laboratory SHINE 2005, July 11-15, 2005 Transient Shocks and Associated Energetic Particle Events Observed.
Study of Pi2 pulsations observed from MAGDAS chain in Egypt E. Ghamry 1, 2, A. Mahrous 2, M.N. Yasin 3, A. Fathy 3 and K. Yumoto 4 1- National Research.
Solar and Interplanetary Sources of Geomagnetic disturbances Yu.I. Yermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev Space Research Institute.
Recap and Space Weather In the Magnetosphere (II) Yihua Zheng June 5, 2013 SW REDI.
On the Space Weather Response of Coronal Mass Ejections and Their Sheath Regions Emilia Kilpua Department of Physics, University of Helsinki
Relativistic Electrons, Geomagnetic Indices, and ULF wave activity in the Terrestrial Magnetosphere N. Romanova, V Pilipenko, O. Kozyreva, and N. Yagova.
SAPS intensification during substorm recovery: A multi-instrument case study Roman A. Makarevich University of Alaska Fairbanks, USA A. C. Kellerman, J.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Spatial distribution of the auroral precipitation zones during storms connected with magnetic clouds O.I. Yagodkina 1, I.V. Despirak 1, V. Guineva 2 1.
Title of Project Participants and Tutor Collect photos of group members.
Identification and Analysis of Magnetic Substorms Patricia Gavin 1, Sandra Brogl 1, Ramon Lopez 2, Hamid Rassoul 1 1. Florida Institute of Technology,
Space Weather Forecast Models from the Center for Integrated Space Weather Modeling The Solar Wind Forecast Model Carrington Rotation 1896Carrington Rotation.
Solar Activities and Halloween Storms Ahmed Hady Astronomy Department Cairo University, Egypt.
Solar Activity and VLF Prepared by Sheila Bijoor and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME.
THEMIS observations of consecutive bursts of Pi2 pulsations during weak geomagnetic times Ching-Chang Cheng ( 鄭慶章 ) Faculty of Physics, Department of Electronic.
Recap and Space Weather In the Magnetosphere (II) Yihua Zheng June 5, 2014 SW REDI.
Geospace Variability through the Solar Cycle John Foster MIT Haystack Observatory.
Solar wind-magnetosphere- atmosphere coupling: effects of magnetic storms and substorms in atmospheric electric field variations Kleimenova N., Kozyreva.
Numerical simulations are used to explore the interaction between solar coronal mass ejections (CMEs) and the structured, ambient global solar wind flow.
Katya Georgieva Boian Kirov Simeon Asenovski
CR variation during the extreme events in November 2004 Belov (a), E. Eroshenko(a), G. Mariatos ©, H. Mavromichalaki ©, V.Yanke (a) (a) IZMIRAN), ,
Magnetic Storm Generation by Various Types of Solar Wind: Event Catalog, Modeling and Prediction N. S. Nikolaeva, Yu.I. Yermolaev, and I. G. Lodkina Space.
How does the Sun drive the dynamics of Earth’s thermosphere and ionosphere Wenbin Wang, Alan Burns, Liying Qian and Stan Solomon High Altitude Observatory.
Olga Khabarova Heliophysical Laboratory, Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS (IZMIRAN), Moscow, Russia
Space Weather from Coronal Holes and High Speed Streams M. Leila Mays (NASA/GSFC and CUA) SW REDISW REDI 2014 June 2-13.
Magnetosphere-Ionosphere coupling processes reflected in
National Aeronautics and Space Administration NASA Goddard Space Flight Center Software Engineering Division Overview of Significant SWx Events.
Response of the Polar Cusp and the Magnetotail to CIRs Studied by a Multispacecraft Wavelet Analysis Axel Korth 1, Ezequiel Echer 2, Fernando L. Guarnieri.
The Sun- Solar Activity. Damage to communications & power systems.
A. Kullen (1), L. Rosenqvist (1), and G. Marklund (2) (1) Swedish Institute of Space Physics, Uppsala, Sweden (2) Royal Institute of Technology, Stockholm,
Statistical properties of southward IMF and its geomagnetic effectiveness X. Zhang, M. B. Moldwin Department of Atmospheric, Oceanic, and Space Sciences,
29 August, 2011 Beijing, China Space science missions related to ILWS in China
Dynamics of the Radiation Belts & the Ring Current Ioannis A. Daglis Institute for Space Applications Athens.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
MAGNETOSPHERIC RESPONSE TO COMPLEX INTERPLANETARY DRIVING DURING SOLAR MINIMUM: MULTI-POINT INVESTIGATION R. Koleva, A. Bochev Space and Solar Terrestrial.
Solar cycle dependence of EMIC wave frequencies Marc Lessard, Carol Weaver, Erik Lindgren 1 Mark Engebretson University of New HampshireAugsburg College.
Energy conversion at Saturn’s magnetosphere: from dayside reconnection to kronian substorms Dr. Caitríona Jackman Uppsala, May 22 nd 2008.
Identifying the Role of Solar-Wind Number Density in Ring Current Evolution Paul O’Brien and Robert McPherron UCLA/IGPP.
Forecast of Geomagnetic Storm based on CME and IP condition R.-S. Kim 1, K.-S. Cho 2, Y.-J. Moon 3, Yu Yi 1, K.-H. Kim 3 1 Chungnam National University.
Interplanetary Shocks in the Inner Solar System: Observations with STEREO and MESSENGER During the Deep Solar Minimum of 2008 H.R. Lai, C.T. Russell, L.K.
The Geoeffectiveness of Solar Cycle 23 as inferred from a Physics-Based Storm Model LWS Grant NAG Principal Investigator: Vania K. Jordanova Institute.
CME Propagation CSI 769 / ASTR 769 Lect. 11, April 10 Spring 2008.
What we can learn from the intensity-time profiles of large gradual solar energetic particle events (LGSEPEs) ? Guiming Le(1, 2,3), Yuhua Tang(3), Liang.
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
WSM Whole Sun Month Sarah Gibson If the Sun is so quiet, why is the Earth still ringing?
Space Science MO&DA Programs - November Page 1 SS It is well known that intense auroral disturbances occur in association with substorms and are.
Statistical Analysis of Geomagnetic Storm Occurrences By: Seth Sivak.
Correlation of magnetic field intensities and solar wind speeds of events observed by ACE. Mathew J. Owens and Peter J. Cargill. Space and Atmospheric.
ABSTRACT Disturbances in the magnetosphere caused by the input of energy from the solar wind enhance the magnetospheric currents and it carries a variation.
Summary Using 21 equatorial CHs during the solar cycle 23 we studied the correlation of SW velocity with the area of EIT CH and the area of NoRH RBP. SW.
Extreme Event Symposium 2004 MAGNETOSPHERIC EFFECT in COSMIC RAYS DURING UNIQUE MAGNETIC STORM IN NOVEMBER Institute of Terrestrial Magnetism,
ESS 261 Lecture April 28, 2008 Marissa Vogt. Overview  “Probabilistic forecasting of geomagnetic indices using solar wind air mass analysis” by McPherron.
Thermospheric density variations due to space weather Tiera Laitinen, Juho Iipponen, Ilja Honkonen, Max van de Kamp, Ari Viljanen, Pekka Janhunen Finnish.
Source and seed populations for relativistic electrons: Their roles in radiation belt changes A. N. Jaynes1, D. N. Baker1, H. J. Singer2, J. V. Rodriguez3,4.
Drivers and Solar Cycles Trends of Extreme Space Weather Disturbances
What are Geomagnetic Storms?
ARTEMIS – solar wind/ shocks
Drivers and Solar Cycles Trends of Extreme Space Weather Disturbances
Extremely Intense (SML ≤ nT) Supersubstorms (SSS)
Johns Hopkins Applied Physics Laboratory, Laurel MD, USA
Introduction to Space Weather Interplanetary Transients
Mid-latitude Electron Density Variations Under Magnetospheric Substorm Conditions As Determined From Istanbul Dynasonde Observations Aysegul Ceren MORAL,
Solar Wind Transients and SEPs
Yuki Takagi1*, Kazuo Shiokawa1, Yuichi Otsuka1, and Martin Connors2  
Introduction to Space Weather
P. Stauning: The Polar Cap (PC) Index for Space Weather Forecasts
N. Romanova, V Pilipenko, O. Kozyreva, and N. Yagova
Searching for relationships between the solar regular daily magnetic variation at mid latitude and the solar irradiance at different ionizing wavelengths.
Added-Value Users of ACE Real Time Solar Wind (RTSW) Data
Presentation transcript:

Substorm Activity during CME and CIR Driven Storms Smitha Thampi, Diwakar Tiwari, Ruigang Wang, Hui Zhang, Ling Qian Zhang, Yihua Zheng Tutor: Robert L. McPherron

Introduction & Scientific Background Geomagnetic storms, in which the global geomagnetic field intensity decreases on the order of tens to hundreds nT, are large scale phenomena in the solar wind- magnetosphere-ionosphere coupling. Geomagnetic storms develop when solar wind- magnetosphere couplings are intensified by solar wind disturbances (coronal holes and CMEs). Types of Geomagnetic storms: CME driven, CIR driven, (others) Solar minimum (CIRs) Solar maximum (CMEs)

Characteristics (view of the present): the storms driven by the fast CMEs are usually very intense (Dst <-100 nT), while the storms diven by CIRs are usually weaker and their main phase has irregular profile and long recover phase lasting many days to weeks and cause High Intensity Long Duration Continuous AE Activity (HILDCAAs). Since they are caused by recurrent high speed streams, they are ordered in time. Importance: Although CIR storms are weak, they may be very important in generating relativitic electrons (semiannual variation of killer electrons and Dst in solar minimum), which are detremental to spacecraft, human in space and so on. ====> Focus of the proposal: Characteristics of CIR storms and the differences and similarities between the two types of magnetic storms Introduction & Scientific Background --- continued

High flux of killer electrons appear in solar minimum Killer electrons' semiannual variations Dst also has semiannual variations ==> solar min storms correlate with killer electron fluxes CIR storms ~ killer e- fluxes

Scientific objectives: to understand the characteristics, and the differences and similarities of the solar origin (the driver) of the two types of magnetic storms and the differences and similarities of the ionosphere's responses to the two-type storms via auroral activities. Specifically, we will use 40 years of solar wind and IMF data along with other necessary parameters to study: Difference (if any) between CME and CIR Storms (solar wind and IMF para.) Distribution of AE during CME and CIR storms Duration of AE disturbances in the recovery phase of two types of storms The role of Russell-McPherron effect on CIR storms Effects of the two storm types on relativistic electrons Other Ionospheric effects caused by the two types. (???? more specific?) Scientific Objectives

Scientifically: this investigation will help in better understanding the following outstanding questions related to geomagnetic storms: a) the role of solar wind density in storm growth? b) How do the properties of storms change with the solar cycle? c) Does storm development depend on season and universal time? Pratically: with better understanding of the driver characteristics of two types of storms during solar minimum and solar maximum, it will help us in a better definition of forecasting procedure from the solar origin, which is crucial in space weather forecasting. Relativistic (killer) electrons are detremental to satellites, human in space and can also create great damage on the ground. They are known to have high fluxes during solar minimum and are possibly correlated to CIR driven storms. Understanding their relationship is very important for reducing or minimizing their damaging effects. Significance of the proposal

Approach Data sets required OMNI data Synchronous relativistic electron fluxes ISCAT/SuperDARN Range-Time-Intensity/Velocity Preprocessing Data editing and creation of Matlab binary files Analysis tools Plot solar wind and IMF data along with AE and Dst indices to select events and then the significant times for further analysis==> Use Matlab built-in functions and/or procedures and also develop necessary software to perform statistical analysis and display tools

An example of how to find CIR recurrent high speed stream interface Details on analysis approaches

Preliminary results

Preliminary Results

Work Plan (1 year) Data Downloading: Ruigang Wang and Hui Zhang (1month) Software development: Diwakar Tiwari, Smitha Thampi (1 month) Literature search and knowledge enhancement: Yihua Zheng and Ling Qian Zhang (1 month) These are done simultaneously. Event selection and data analysis: divide and conquer, each of the team members perform the investigation for several years (10 month) nterpretation of the results: all (1 month)

References 1. Gonzalez, W. D., B. T. Tsurutani and A. L. C. Gonzalez, Interplanetary origin of geomagnetic storms, Space Sci. Rev. 88, , Kamide, Y., R.L. McPherron, W.D. Gonzalez, D.C. Hamilton, H.S. Hudson, J.A. Joselyn, S.W. Kahler, L.R. Lyons, H. Lundstedt, and E. Szuszczewicz, Magnetic storms: Current understanding and outstanding questions, in Proceedings of the Chapman Conference on Magnetic Storms, pp. 1-19, American Geophysical Union, Jet Propulsion Laboratory, Pasadena, CA, McPherron, R.L., Physical processes producing magnetospheric substorms and magnetic storms, in Geomagnetism, Vol 4, edited by J. Jacobs, pp , Academic Press Ltd., London, England, O'Brien, T.P., Empirical Analysis of Storm-Time Energetic Electron Enhancements, Unviersity of California Los Angeles, Los Angeles, O'Brien, T.P., R.L. McPherron, D. Sornette, G.D. Reeves, R. Friedel, and H.J. Singer, Which magnetic storms produce relativistic electrons at geosynchronous orbit?, Journal of Geophysical Research, 106 (A8), , Tsurutani, B. T., and W. D. Gonzalez, The cause of high-intensity long-duration continuous AE activity (HILDCAAS): Interplanetary Alfven wave trains, Planet. Space Sci., 35, , Tsurutani, B.T., and W.D. Gonzalez, The causes of geomagnetic storms during solar maximum, presented at Eos Trans. AGU, Tsurutani, B.T., W.D. Gonzalez, and Y. Kamide, Magnetic storms, Surveys in Geophysics, 18, , 1997.

Extras

Motivation---some open questions in Solar Cycle Variations in Storms ● Is there a difference between storms at solar minimum and maximum? Do solar minimum storms develop differently from solar-max storms? Do these storms last longer? Does the occurrence rate of substorms, SMC, Sawtooths in different phases of a storm change with solar cycle? Why are there more killer electrons at solar minimum? Why is there a strong semiannual and universal time variation in occurrence and size of storms at solar minimum? What physical effects are the cause of the semiannual variation in Dst? What effects do Alfen waves in high speed streams have on storms?