Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.

Slides:



Advertisements
Similar presentations
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Advertisements

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Spin dynamics of stripe-ordered layered nickelates Andrew Boothroyd Department of Physics, Oxford University Ni 2+ (S=1) Ni 3+ (S=1/2) Cu 2+ (S=1/2) Cu.
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Stripe Ordering in the Cuprates Leland Harriger Homework Project for Solid State II Instructor: Elbio Dagotto Physics Dept., University of Tennessee at.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La Ba CuO 4 Z. Guguchia, 1 R. Khasanov, 2 M. Bendele, 1 E. Pomjakushina,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
Electronic structure of La2-xSrxCuO4 calculated by the
M. Hücker Manipulating Competing Order with High Pressure Neutron Scattering Group (CMPMS) Correlated Electron Systems ( Superconductivity, Magnetism,
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Superconductivity in Zigzag CuO Chains
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Hubbard model(s) Eugene Demler Harvard University Collaboration with
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Stability of RVB state with respect to charge modulations Rastko Sknepnek Iowa State University and DOE Ames Lab In collaboration with: Jun Liu and Joerg.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Spin Liquid Phases ? Houches/06//2006.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Whither Strongly Correlated Electron Physics ? T.M.Rice ETHZ & BNL What`s so unique about the cuprates among the many materials with strongly correlated.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
SO(5) Theory of High Tc Superconductivity Shou-cheng Zhang Stanford University.
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
NMR evidence for spatial correlations between spin and charge order in (La,Eu) 2-x Sr x CuO 4 Nicholas Hans-Joachim Grafe, Los Alamos.
How does Superconductivity Work? Thomas A. Maier.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Tuning order in the.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Structure and dynamics of spin polarons induced by doping a Haldane spin-1 chain Collin Broholm * Johns Hopkins University and NIST Center for Neutron.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
One Dimensional Magnetic Systems Strong Fluctuations in Condensed Matter Magnetism in one dimension Pure systems Doped systems Magnetized states Conclusions.
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Quantum vortices and competing orders
Deformation of the Fermi surface in the
Presentation transcript:

Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September , 2004 Montauk, New York

Outline Early ideas about La 2 CuO 4 : quantum spin liquid Reality: La 2 CuO 4 is a good antiferromagnet Hole doping frustrates commensurate Néel order Formation of charge stripes reduces magnetic frustration (and lowers KE) Are stripe correlations relevant to superconducting cuprates?

Anderson’s RVB proposal for La 2 CuO 4 PW Anderson, Science 235, 1196 (1987) “The oxide superconductors, particularly those … base on La 2 CuO 4, … tend … to occur near a metal-insulator transition …. This insulating phase is proposed to be the long-sought ‘resonating-valence-bond’ state or ‘quantum spin liquid’ hypothesized in This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration.” PW Anderson, Mat. Res. Bull. 8, 153 (1973) “Resonating Valence Bonds: A New Kind of Insulator” Proposal for S=1/2 on a triangular lattice

Local RVB singlets Kivelson, Rokhsar, and Sethna, PRB 35, 8865 (1987) Existence of a spin gap leads to Bose condensation of doped holes Requires dynamic modulation of superexchange by phonons Reality: Cu-O bonds are stiff

Frustration by AF next-nearest-neighbor exchange Sachdev and Read, Int. J. Mod. Phys. B 5, 219 (1991) spin-Peierls order

Reality: An isolated CuO 2 plane would order at T = 0 S(q 2D ) ~ 1 / [(q 2D ) 2 +  -2 ]  = spin-spin correlation length  -1 ~ exp(-  J/T) J = 135 meV ~ 1500 K Theory: Chakravarty, Halperin,+Nelson, PRB 39, 2344 (1989) Hasenfratz+Niedermayer, PL B 268, 231 (1991) Expt: Birgeneau et al., JPCS 56, 1913 (1995)    as T  0

Spin waves in La 2 CuO 4 : No sign of frustration J = 146 meV J c = 61 meV at T = 10K J’ = J’’ = 2 meV Coldea et al., PRL 86, 5377 (2001)

Typical Phase Diagram: La 2-x Sr x CuO 4

Doping kills LRO but not SRO Phase diagram for La 2-x Sr x CuO 4 and Y 1-2x Ca 2x Ba 2 Cu 3 O 6 p sh = x Local magnetic field at T = 1 K measured by muon spin rotation Niedermayer, Budnick, et al. PRL 80, 3843 (1998)

Magnetic dilution Destruction of LRO requires 40% dilution! Experimental results for La 2 Cu 1-z (Zn,Mg) z O 4 Vajk et al., Science 295, 1691 (2002)

Competing Interactions Motion of hole lowers kinetic energy but costs superexchange energy

One hole in an antiferromagnet Dispersion measured by angle-resolved photoemision in Sr 2 CuO 2 Cl 2 Wells et al., PRL 74, 964 (1995). Bandwidth for occupied states is ~ 2J << 4t

Hole segregation to antiphase domain walls 1D model 2D extrapolation

Charge and spin stripe order

Early stripe predictions Zaanen and Gunnarson Phys. Rev. B 40, 7391 (1989) Hubbard model Mean-field solution White and Scalapino, PRL 80, 1272 (1998) t-J model Density matrix renormalization group

Alternative: Frustrated Phase Separation Löw, Emery, Fabricius, and Kivelson, PRL 72, 1918 (1994) Competing interactions result in striped and checkerboard phases Analysis of t-J model by Emery and Kivelson: Holes tend to phase separate! t-J model lacks long-range part of Coulomb interaction Long-range Coulomb repulsion frustrates phase separation

Stripe ORDER seen only in special cases 1/8 problem LTT LTO

Antiferromagnetic “resonance” in SC cuprates T-dependent resonance observed by Keimer and coworkers in  YBa 2 Cu 3 O 6+x bilayer  Bi 2 Sr 2 CaCu 2 O 8+  bilayer  Tl 2 Ba 2 CuO 6+  single layer (But not in La 2-x Sr x CuO 4 ) YBa 2 Cu 3 O 7 Mook et al., PRL 70, 3490 (1993)

Spin fluctuations in YBCO do not look like spin waves Bourges et al., Science 288, 1234 (2000) YBa 2 Cu 3 O 6.85 Bourges et al., PRL 90, (2002) La 1.79 Sr 0.31 NiO 4

Large crystals of La Ba CuO 4 studied on MAPS Diameter = 8 mm Length = 140 mm Mass > 40 g MAPS spectrometer at ISIS Crystals grown at BNL by Genda Gu

Constant-energy slices through magnetic scattering Stripe-ordered La Ba CuO 4 T = 12 K T c < 6 K

24 meV 34 meV 66 meV 105 meV h k La 2-x Ba x CuO 4 x = 1/8 Normal state with Stripe order YBa 2 Cu 3 O 6.6 Superconducting state Hayden et al., Nature 429, 531 (2004)

Comparison of LBCO and YBCO Magnetic excitation spectra look the same! (E LBCO ~ 1.5 E YBCO )  Implies same mechanism at work in both Excitations in LBCO associated with stripes  Suggests stripe correlations present in YBCO “Resonance peak” is just the most visible part of the spectrum  Present even in non-superconducting LBCO

How can we understand the stripe excitation spectrum?

Comparison with ladder model 2-leg, AF spin ladder J = 100 meV two domains

Evidence for spin gap

Better theoretical models Weakly-coupled stripes Vojta and Ulbricht cond-mat/ Uhrig, Schmidt, and Grüninger cond-mat/ included 4-spin cyclic exchange Mean-field stripe order + fluctuations Seibold and Lorenzana cond-mat/ dispersion is more 2D-like

Universal Spectrum + Spin gap LSCO(?) YBCO(?)

Conclusions Stripes form due to competing interactions (frustration) Magnetic excitation spectrum of a stripe-ordered cuprate is same as in good superconductors  Suggests a universal spectrum Quantum spin gap of two-leg ladders may be important for hole pairing LBCO results: Nature 429, 534 (2004)

Collaborators BNL Hyungje Woo Genda Gu Guangyong Xu IMR, Tohoku Univ. Masa Fujita Hideto Goka Kazu Yamada ISIS Toby Perring

“Resonance” effects can be incommensurate LSCO x = 0.16 Christensen et al. cond-mat/ Superconducting Normal state Effect of magnetic field in LSCO x=0.18 PRB 69, (2004)

Expected scattering patterns in reciprocal space

Single-domain YBa 2 Cu 3 O 6.85 Hinkov et al., Nature 430, 650 (2004) E = 35 meV E res = 41 meV