♥ It is a general term for a method in quantitative chemical analysis in which the amount of a substance is determined by the measurement of the volume.

Slides:



Advertisements
Similar presentations
Stoichiometry of Precipitation Reactions
Advertisements

Volumetric Analysis. Volumetric analysis involves the analysis of a solution of unknown concentration with a standard solution. A pipette is used to transfer.
Acids and Bases Titrations AP Chemistry. Neutralization Reactions and Titrations Neutralization Reactions Strong acid + Strong Base  Salt + Water HCl.
Arrhenius Definition of Acids Bases - Substances that produce hydrogen ions, H + when dissolved in water - Substances that produce hydroxide ions, OH -
1 Chapter 11 Reactions in Aqueous Solutions II: Calculations Aqueous Acid-Base Reactions 1. Calculations Involving Molarity 2. Titrations 3. The Mole Method.
Acid-Base Stoichiometry
Unit 2 Stoichiometry – Volumetric analysis
Burette clamp ring stand burette erlenmeyer flask Titration.
Author: J R Reid Chapter 5 Volumetric Analysis. CONCEPT OF VOLUMETRIC ANALYSIS The reactants will react with the standard solution from burette of a known.
Introduction The Equipment The Process Calculations
Analysis & Stoichiometry Adv Higher Unit 2 Topic 1 Gordon Watson Chemistry Department, Kelso High School.
Solution Stoichiometry
Titrations. Titration is a volumetric procedure for determining the concentration of an unknown species by adding a carefully measured volume of a known.
Reactions in Aqueous Solutions II: Calculations Chapter 11.
Titrations Titrations A. Titrations – is an experimental procedure in which a standard solution is used to determine the concentration of an unknown.
Acids & Bases and Titrations Properties of Acids & Bases Acids –taste sour –feel like water –good electrolytes –turn blue litmus paper “pink” –pH less.
TITRATION This involves removing small samples from the reaction mixture at different times and then titrating the sample to determine the concentration.
Solutions Solubility -the amount of solute that can be dissolved to form a solution. Solvent – the substance in a solution present in the greatest amount.
Acid-Base Titration and pH
Acids and Bases Chapter 15.
Volumetric Analysis Titration Dr.Riham Hazzaa
ACID-BASE CHEMISTRY Definitions: Arrhenius Acids = proton donors (H+) Bases = hydroxide donors Bronsted-Lowry Acids = proton donors Base = proton acceptors.
Types of Chemical Reactions and Solution Stoichiometry.
Solutions & Acid and Base Review Game Chemistry. Name the Acid  HBr.
ACIDS AND BASES Acid Base Titration A very accurate method to measure concentration. Acid + Base  Salt + Water H + + OH -  H 2 O Moles H + = Moles.
Acids Arrhenius Model Produce hydrogen ions aqueous solution. HCl  H + (aq) + Cl - (aq) Acids you SHOULD know: Acids you SHOULD know: Strong Acids Hydrochloric.
Standardisation of Sodium Hydroxide solution
Chapter 14 Acids and Bases. Chapter 14 Table of Contents Copyright © Cengage Learning. All rights reserved The Nature of Acids and Bases 14.2Acid.
Acid-Base Chemistry Arrhenius acid: Substance that dissolves in water and provides H + ions Arrhenius base: Substance that dissolves in water and provides.
DETERMINATION OF AN UNKNOWN DIPROTIC ACID THROUGH VOLUMETRIC ANALYSIS
Solutions.
Ch. 18: Acids & Bases Sec. 18.4: Neutralization.
Volumetric analysis 4th lecture.
Acids and Bases Chapter 20.
Acids and Bases.
Part-2 Standardization of Hydrochloric Acid Solution.
Acid-Base Equilibria The reaction of weak acids with water, OR the reaction of weak bases with water, always results in an equilibrium!! The equilibrium.
General chemistry Lab 2. Chemistry Analytical Chemistry Gravimetric Analysis Oxidation and Reduction Reactions Oxidation and Reduction Reactions Instrumental.
Introduction The Equipment The Terms The Process Calculations
UNIT 4: Solutions: Dilutions & Titrations. Strong Acids An acid that ionizes completely in water is called a strong acid. Hydrochloric acid, HCl(aq),
1 Titrations (Review) In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration.
bjects/3312/ /blb1703.html.
Acid-Base Titration Arhenius Acid HA → H⁺ A⁻ Acid are species that can donate proton, H⁺ Base BOH → B⁺ + OH⁻ Base are species that can donate hydroside.
Analysing Acids and Bases
Acid/Base Titration Technique used to determine the concentration of an acid or base by comparison with a standard. A neutralization reaction is carried.
10.3Acid-Base Stoichiometry. Titration A method for determining the concentration of a solution by reacting a known volume of that solution with a solution.
Review U2 S3. An indicator is a weak acid which changes color in response to specific change in pH. –The pH range at which an indicator molecule changes.
Acids and Bases Part 2 The pH Scale The pH scale is used to describe the concentration of an acidic or basic solution.
Acids and Bases Part 2 The pH Scale Water n Water ionizes; it falls apart into ions. H 2 O  H + + OH - H 2 O  H + + OH - n The reaction above is called.
Chapter 15. Section 1  The Ionization Constant of Water (K W )  Water self-ionizes to a small extent to form H 3 O + and OH -  The concentrations.
Bronsted-Lowry theory An acid is a substance from which a proton (H + ion) can be removed A base is a substance that can remove a proton (H + ion) from.
Acids and Bases Part 2 The pH Scale Water n Water ionizes; it falls apart into ions. H 2 O  H + + OH - H 2 O  H + + OH - n The reaction above is called.
Stoichiometry: Quantitative Information About Chemical Reactions Chapter 4.
Chapter 15: Acids & Bases Ridgewood High School
Acids and Bases Titrations. Acids and Bases - 3 Definitions Arrhenius Arrhenius Bronsted-Lowry Bronsted-Lowry Lewis Lewis.
PH Titration Curves & Indicators. Objectives 1)Review AS understanding of titration calculations for: Reacting volumes & Reactant concentrations 1)Predict,
End of Section 18-2 Section 18-3 Section 18.3 Hydrogen Ions and pH Explain pH and pOH. Le Châtelier’s principle: states that if a stress is applied to.
POINT > Review acid-base neutralization POINT > Identify pH indicators and how they work POINT > Describe titration process.
Equilibrium. Chemical equilibrium is the state where the concentration of all reactants and products remain constant with time. At equilibrium, the rate.
Unit 15 Acids & Bases.
Acids Lesson 16 Titrations.
Ch. 17 Buffers and Acid/Base Titration Lecture 3 – Titrations
Titration burette clamp ring stand burette erlenmeyer flask (buret)
Chapter 15 Acids and Bases.
Acids and Bases.
Titration standard solution unknown solution Titration
Titration burette clamp ring stand burette erlenmeyer flask (buret)
To learn about two models of acids and bases
EXP. NO. 6 Acid Base Titration
Acid-Base Titration. Acid-Base Titration. Acid-Base Titration.
Presentation transcript:

♥ It is a general term for a method in quantitative chemical analysis in which the amount of a substance is determined by the measurement of the volume that the substance occupies. ♥ It is commonly used to determine the unknown concentration of a known reactant. ♥ Volumetric analysis is often referred to as titration, a laboratory technique in which one substance of known concentration and volume is used to react with another substance of unknown concentration.

Volumetric Analysis  Involves the preparations, storage, and measurement of volume of chemicals for analysis Volumetric Titrimetry  Quantitative chemical analysis which determines volume of a solution of accurately known concentration required to react quantitatively with the analyte (whose concentration to be determined).  The volume of titrant required to just completely react with the analyte is the TITRE.

Titration  A process in which a standard reagent is added to a solution of analyte until the reaction between the two is judged complete Primary Standard A reagent solution of accurately known concentration is called a standard solution. Standardization  A process to determine the concentration of a solution of known concentration by titrating with a primary standard

End point  The point at which the reaction is observed to be completed is the end point  The end point in volumetric method of analysis is the signal that tells the analyst to stop adding reagent and make the final reading on the burette.  Endpoint is observed with the help of indicator Equivalent point  The point at which an equivalent or stoichiometric amount of titrant is added to the analyte based on the stoichiometric equation

 Volumetric analysis involves a few pieces of equipment: Pipette – for measuring accurate and precise volumes of solutions Burette – for pouring measured volumes of solutions Conical flask – for mixing two solutions Wash bottles – these contain distilled water for cleaning equipment Funnel – for transfer of liquids without spilling Volumetric flasks – a flask used to make up accurate volumes for solutions of known concentration

 Two solutions are used:  The solution of unknown concentration;  The solution of known concentration – this is also known as the standard solution  Write a balanced equation for the reaction between your two chemicals  Clean all glassware to be used with distilled water. The pipettes and burettes will be rinsed with the solutions you are adding to them

 The burette is attached to a clamp stand above a conical flask  The burette is filled with one of the solutions (in this case a yellow standard solution)  A pipette is used to measure an aliquot of the other solution (in this case a purple solution of unknown concentration) into the conical flask  Prepare a number of flasks for repeat tests  Last, an indicator is added to the conical flask

 Read the initial level of liquid in the burette  Turn the tap to start pouring out liquid of the burette into the flask. Swirl the flask continuously. When the indicator begins to change colour slow the flow.  When the colour changes permanently, stop the flow and read the final volume. The volume change needs to be calculated (and written down). This volume is called a titre  Repeat the titration with a new flask now that you know the ‘rough’ volume required. Repeat until you get precise results

Acid-base titration Complexometric Reduction- oxidation Precipitation

 Titration is a process in which a standard reagent is added to a solution of an analyte until the reaction between the analyte and reagent is judged to be complete.  When the reaction involves an acid and a base, the method is referred to as an acid-base titration.  When the reaction involves oxidation and reduction, the method is referred to as a redox titration.

 Equivalence point: The point in the reaction at which both acid and base have been consumed (equivalent or exactly stoichiometric amount), i.e. neither acid nor base is present in excess.  End point: Actual result obtained by observation of a sudden change of physical properties, i.e. indicator changes color very near to the equivalent point.  Titrant: The known solution added to the solution of unknown concentration.  Titration Curve: The plot of pH vs. volume. Titrations involving acid-base neutralization reactions.

END POINTEQUIVALENT POINT The point at which the reaction is observed to be completed The point at which an equivalent or stoichiometric amount of titrant is added to the analyte The end point signal frequently occurs at some point other than the equivalent point. - tells the analyst to stop adding TITRANT and record the volume. The point at which the reaction is complete The selected indicator should change color very near to the equivalent point. Theoritically at the equivalence point we can calculate the amount of titrant that is required to react EXACTLY with the amount of analyte present.

What is a titration : A procedure of carefully controlled addition of reagent (titrant) to an analyte. Known concentration – called standard Usually in buret Usually in a conical flask

What happened during Titration

 Reaction must be stoichiometric, well defined reaction between titrant and analyte.  Reaction should be rapid.  Reaction should have no side reaction, no interference from other foreign substances.  Must have some indication of end of reaction, such as color change, sudden increase in pH, zero conductivity, etc.  Known relationship between endpoint and equivalence point.

 Direct Titration: Titrant is added to the analyte until the reaction is complete.  Back Titration: Alternative technique to direct titration.

Example 1 A sample weighing g is a diprotic acid was dissolved in 75.0 mL distilled water. Indicator was added and the solution was titrated with sodium hydroxide solution mL was needed to reach the end point. Molar mass of acid is 150 g/mol. 1.State whether the equivalence point is greater or less than 7. 2.Name a suitable indicator that can be used in the above titration. 3.Calculate the molarity of the base.

First write the reaction equation: Equation: H 2 A + 2OH -  2H 2 O + A 2- 1 mole acid = ½ mole base Mole acid = = x mole = mmole

Molarity of acid = = M = M b = = M #

OR Mmole base = 2 x mmole acid = 2 x mmole = mmole NaOH. Molarity NaOH = = = M

Example 2: Calculate the concentration of vinegar in %w/v for a titration of 25 ml of vinegar which was primarily diluted 10 times (25mL into 250mL), reacted with 22.4 ml of 0.1 M NaOH standard solution. Mass of vinegar = (Liters vinegar )(M vinegar )(Fwgt vinegar ) = (0.25)( )(60) = 1.34g In %w/v, concentration of vinegar is 1.34/25 = 5.4% In g/mL

Sometime not feasible due to:  Reaction kinetic or the reaction rate is slow.  No suitable indicator in the direct titration.  The color change is slow or delay.  The end point is far from the equivalent point.

 In a simple acid-base titration, a base (reagent) is added in a known quantity – greater than the amount required for acid neutralization.  Acid and base reacts completely.  The remaining base is titrated with a standard acid.  The system has gone from being ACID, past the equivalent point to the BASIC (excess base), and back to the equivalent point again. The final titration to the equivalent point is called BACK TITRATION.

 The titration of insoluble acid organic acid with NaOH is not practical because the reaction is slow.  To overcome it add NaOH in excess and allow the reaction to reach completion and then titrate the excess NaOH with a standard solution of HCl.  The system has gone from being ACID, past the equivalence point to the BASIC side (excess base), and then back to the equivalence point.  The final titration to the equivalence point is called a BACK TITRATION.

Example mL of M nitric acid was added in excess to g calcium carbonate. The excess acid was back titrated with M sodium hydroxide. It required 75.5 mL of the base to reach the end point. Calculate the percentage (w/w) of calcium carbonate in the sample. Calculation Examples On Analysis Using Back Titration Method.

First write a balance equation for the above reactions. 2HNO 3 + CaCO 3  Ca(NO 3 ) 2 + CO 2 + H 2 O HNO 3 + NaOH  NaNO 3 + H 2 O From Equations above: 1 mole HNO 3 = ½ mole CaCO 3 1 mole HNO 3 = 1 mole NaOH Initial amount of acid: mmole of acid = x 150 = mmole acid.

Remaining/excess acid during back titration: Mmole of excess acid = x 75.5 = mmole acid. Mmole of acid reacted with CaCO 3 = ( – ) = mmole acid. Mmole of CaCO 3 = ½ x mmole acid = ½ x = mmole CaCO 3.

Gram CaCO 3 = mole x molar mass = x x 100 = g. % CaCO 3 = x 100 = x 100 = % (w/w)

Arhenius Acid HA H + + A -  Acid are species that can DONATE PROTON, H + Base BOH B + + OH -  Base are species that can DONATE HYDROSIDE ions, OH -  Neutralisation is the reaction between an acid and a base : H + + OH -  H 2 O Bronsted: Acid  it can donate proton, H + Base  it can accept proton, H +

In theory, any strong acid or strong base can be used as titrant. The reason for this is that most reaction involving a strong acid or a strong base is QUANTITATIVE. Examples of strong acid titrants : Hydrochloric acid (HCl), Nitric acid (HNO 3 ), Perchloric acid (HClO 4 ), Phosphoric acid (H 3 PO 4 )

Acetic acid,(CH 3 COOH) Ammonium ion, (NH 4 - ) Hydrogen flouride, (HF) Carbonic acid, (H 2 CO 3 ) Nitrous acid, (HNO 2 ) Hydrogen sulphide, (H 2 S) Hydrogen cynide, (HCN)

Strong base titrantWeak base titrant Sodium hydroxide, NaOH Potassium hydroxide, KOH Magnesium hydroxide, Mg(OH) 2 Barium hydroxide, Ba(OH) 2 Ammonium hydroxide, NH 4 OH Amine acetate. Carbonate, CO 3 2- Flouride ion, F - Sodium carbonate, NaCO 3 Strong & Weak Base Titrant

1. Titration of strong acid with strong base. 2. Titration of strong acid with weak base. 3. Titration of weak acid with strong base. 4. Titration of weak acid with weak base.

36 pH – A Measure of Acidity pH = -log [H + ] [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic [H + ] = 1 x [H + ] > 1 x [H + ] < 1 x pH = 7 pH < 7 pH > 7 At 25 0 C pH[H + ]

pH mL of Base added 7  Strong acid with strong Base  Equivalence at pH 7

 Titration of a strong acid by a strong base Titration curve for the titration of mL of M HCl (a strong acid) with the M NaOH (a strong base). Sudden sharp changes of pH Slow change of pH

Titration curve for the titration of mL of M HCl (a strong acid) with the M NaOH (a strong base). Indicator color

pH mL of Base added >7 l Weak acid with strong Base l Equivalence at pH >7 l When the acid is neutralized it makes a weak base 7

pH mL of acid added 7 l Strong base with strong acid l Equivalence at pH 7

pH mL of acid added <7 l Weak base with strong acid l Equivalence at pH <7 l When the base is neutralized it makes a weak acid 7

pH change is very gradual

 Do the stoichiometry.  mL x M = mmol  There is no equilibrium.  They both dissociate completely.  The reaction is H + + OH -  HOH  Use [H + ] or [OH - ] to figure pH or pOH  The titration of 50.0 mL of M HNO 3 with M NaOH

 There is an equilibrium.  Do stoichiometry.  Use moles  Determine major species  Then do equilibrium.  Titrate 50.0 mL of 0.10 M HF (Ka = 7.2 x ) with 0.10 M NaOH

 Strong acid and base just stoichiometry.  Weak acid with zero ml of base - K a  Weak acid before equivalence point –Stoichiometry first –Then Henderson-Hasselbach  Weak acid at equivalence point- K b - Calculate concentration  Weak acid after equivalence - leftover strong base. - Calculate concentration

 Weak base before equivalence point. –Stoichiometry first –Then Henderson-Hasselbach  Weak base at equivalence point K a. -Calculate concentration  Weak base after equivalence – left over strong acid. -Calculate concentration

Acid –Base Indicators The acid-base indicator function by changing colour just after the equivalence point of a titration; this colour change is called the end point. The end point is most often detected VISUALLY. Most acid-base indicators are organic dye molecules which are either acids or bases.

Indicators can be monoprotic (HIn) or diprotic (H 2 In) acids. The acid form of an indicator is usually coloured; when it loses a proton resulting in anion (In - ), or base form of the indicator, exhibiting different colour.

The two forms exist in equilibrium with one another as follows: Hin H + + In - (colour A) (colour B) A diprotic acid indicator, H 2 In, ionizes in TWO steps as follows: H 2 In HIn - + H + H + + In - (colour A) (colour B) (colour C)

Choose an indicator that undergoes a distinct colour change at the equivalence point (true end point) of an acid-base titration. Choose an indicator whose middle half of the pH transition range (greatest colour change) encompasses/overlap the pH at the equivalence point or the pH at the steepest part of the titration curve. For indicator color change to be detectable by normal eyesight, a rough tenfold excess of one or the other form of the indicator must be present. This corresponds to a pH range of  1 pH unit about the pK of the indicator

Common Name Transition rangeColour ACID Change BASE Crystal violet0.1 – 1.5YellowBlue Thymol blue1.2 – 2.8RedYellow Mrthyl yellow2.4 – 4.0RedYellow Methyl orange3.1 – 4.4RedYellow Bromocresol green3.8 – 5.4YellowBlue Methyl red4.2 – 6.3RedYellow Chlorophenyl red4.5 – 6.4YellowRed Bromothymol blue6.0 – 7.6YellowBlue Phenol red6.4 – 8.0YellowRed Thymol blue8.0 – 9.6YellowBlue Phenolpthalein8.0 – 9.7ColourlessRed Alizarin yellow10.0 – 12.0colourlessViolet

WEAK ACID / STRONG BES