Slides:



Advertisements
Similar presentations
Based on McMurry’s Organic Chemistry, 7th edition
Advertisements

Oxidation-Reduction & Organometallic
Dr. Wolf's CHM 201 & Chapter 14 Organometallic Compounds.
Chapter 10. Alkyl Halides. What Is an Alkyl Halide An organic compound containing at least one carbon-halogen bond (C-X) –X (F, Cl, Br, I) replaces H.
10. Alkyl Halides Based on McMurry’s Organic Chemistry, 6 th edition.
Chapter 7 Organohalides Alkyl halide: a compound containing a halogen atom covalently bonded to an sp 3 hybridized carbon atom –given the symbol RX.
Carbon-Carbon Bond Forming Reactions
205 Chapter 9: Alkynes 9.1: Sources of Alkynes (please read) 9.2: Nomenclature Systematic Nomenclature: Prefix-Parent-Suffix Naming Alkynes: Suffix: -yne.
Organometallic Compounds
Organometallic Compounds Chapter 15. Carbon Nucleophiles: Critical in making larger organic molecules. Review some of the ones that we have talked about….
15-1 Organometallic Compounds Chapter Organometallic Compounds  Organometallic compound:  Organometallic compound: A compound that contains.
Organic Chemistry William H. Brown & Christopher S. Foote.
Synthesis of Alcohols Reduction of Aldehydes and Ketones Common reducing agents and conditions: NaBH 4 ( sodium borohydride ) alcohol, ether, or H 2 O.
Compounds that contain _________________bond (______): Examples of M include ________(Grignard reagents), _____________. ____________ carbon: Reacts with.
CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.
Organometallic Reagents Carbon-Metal Bonds. RX ++++ ––––RM –––– ++++ Nucleophilic carbon.
17.2 How Aldehydes and Ketones React (Part I) 1 ++ R = alkyl or aryl (C) Y = alkyl, aryl or H (class II) (No leaving group) -- Electron rich (Lewis.
Alcohols: Structure & Synthesis
Sulfur-Containing Compounds
Important Synthetic Technique: protecting groups. Using Silyl ethers to Protect Alcohols Protecting groups are used to temporarily deactivate a functional.
Alkynes.
Chapter 10 Structure and Synthesis of Alcohols
Organometallic Reagents: Sources of Nucleophilic Carbon for Alcohol Synthesis 8-7 If the carbonyl carbon of an aldehyde or ketone could be attacked by.
1 Chapter 20 Carbonyl compounds Introduction to carbonyls Reductions and oxidations Addition of organometallics (Rli, RMgX, R2CuLi) to carbonyls.
Chapter 14 Organometallic Compounds
I. Organometallic Reagents = carbon-metal bonds
Chapter 14 Organometallic Compounds Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Dr. Wolf's CHM 201 & Chapter 14 Organometallic Compounds.
Synthesis of Alcohols Using Grignard Reagents
Topics: Grignard reagents and electrophiles
Reduction of Aldehydes and Ketones Reduction of Aldehydes and Ketones to Alcohols.
Chapter 13: Aldehydes and Ketones
CH-1 Organic Chemistry-2 Prepared By Prof Dr. Abdelfattah Haikal & Dr. Khalid Ahmad Shadid Islamic University in Madinah Department of Chemistry Alcohols.
Chapter 14: Organometallics, structure and nomenclature.
14.11 Alkane Synthesis Using Organocopper Reagents
Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation and Redction.
Chapter 15 Reagents with Carbon-Metal Bonds
Chapter 20 Carbonyl Chemistry
Prerequisites: 333 CHEM Linked to course syllabus and “WEB PAGE” synthesis Modified from sides of William.
ALKENE AND ALKYNE REACTIONS, CONTINUED Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , , , 8.10, 8.12,
1 FIVE METHODS OF PREPARING ALCOHOLS. 2 5 METHODS OF PREPARING ALCOHOLS 1. Hydroxide ions (OH - ) replace halogens in unhindered alkyl halides (Me° and.
11.1 Organometallic Compounds (R-M) Organomagnesium & Organolithium compds 15.1 Lithium Diorganocopper (Gilman) Reagents 15.2 No t covered: Organopalladium.
Renee Y. Becker CHM 2210 Valencia Community College
ALKYNES - Chapter 7 nomenclature - (chapt 5), structure, classification acidity of terminal acetylenes - (chapt 4) alkylation prep - dehydrohalogenation.
Spring 2011Dr. Halligan CHM 236 Organometallic Compounds Chapter 11.
Chapter 12 Reactions of Alcohols, Ethers, Epoxides, and Sulfur-Containing Compounds Organometallic Compounds Irene Lee Case Western Reserve University.
1 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation and Reduction Two broad classes of compounds contain the carbonyl group: Introduction.
Carboxylic Acids and Derivatives. Naming Carboxylic Acids Starting materials for acyl derivatives (esters, amides, and acid chlorides) Abundant in nature.
14.11 Alkane Synthesis Using Organocopper Reagents
Synthesis of Alcohols Using Grignard Reagents. Grignard reagents act as nucleophiles toward the carbonyl group RMgX C O – MgX + –––– ++++ R C.
Alcohols Biological Activity Nomenclature Preparation Reactions.
Organometallic Reagents: Sources of Nucleophilic Carbon for Alcohol Synthesis 8-7 If the carbonyl carbon of an aldehyde or ketone could be attacked by.
Chapter 14 Organometallic Compounds
Oxidation-Reduction & Organometallic
More About the Families in Group II
Chapter 14 Organometallic Compounds
Organometallic Compounds
Chapter 10 Organohalides
Chapter 10 Organohalides
Chapter 9 Alkynes: An Introduction to Organic Synthesis
CH 12-3: Grignard Reaction-I
Organometallic Compounds
Chapter 10 Organohalides
Organometallic Compounds
Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation and Reduction.
Organ metallic Compounds
GRIGNARDS REAGENT NEW CHAPTER R-Mg-X.
GRIGNARDS REAGENT NEW CHAPTER R-Mg-X.
Chapter 10 Organohalides
GRIGNARD’S REAGENT R-Mg-X.
Presentation transcript:

Chapter 14: Organometallic Compounds - Reagents with carbon-metal bonds 14.1: Organometallic Nomenclature (please read) 14.2: Carbon-Metal Bonds in Organometallic Compounds

Alkyl halides will react with some metals (M0) in ether or THF to form organometallic reagents 14.3: Preparation of Organolithium Compounds Organolithium Compounds 2 Li(0) R-X R-Li + LiX diethyl ether organolithium reagents are most commonly used as very strong bases and in reactions with carbonyl compounds M(0) H2O R-X R-M R-H + M-OH

14.4: Preparation of Organomagnesium Compounds: Grignard Reagents Mg(0) THF R-X R-MgX (Grignard reagent) R-X can be an alkyl, vinyl, or aryl halide (chloride, bromide, or iodide) Solvent: diethyl ether (Et2O) or tetrahydrofuran (THF) Alcoholic solvents and water are incompatible with Grignard reagents and organolithium reagents. Reactivity of the alkyl halide: -I > -Br > -Cl >> -F alkyl halides > vinyl or aryl halides diethyl ether (Et2O) tetrahydrofuran (THF)

The solvent or alkyl halides can not contain functional groups that are electrophilic or acidic. These are incompatible with the formation of the organomagnesium or organolithium reagent. Grignard reagents will deprotonate alcohols Other incompatible groups: -CO2H, -OH, -SH, NH2, CONHR (amides) Reactive functional groups: aldehydes, ketones, esters, amides, halides, -NO2, -SO2R, nitriles

14.5: Organolithium and Organomagnesium Compounds as Brønsted Bases - Grignard reagents (M = MgX) and organolithium reagents (M = Li) are very strong bases. R-M + H2O R-H + M-OH pKa pKa (CH3)3C-H 71 H2N-H 36 H3CH2C-H 62 26 H3C-H 60 Water 16 45 43 Hydrocarbons are very weak acids; their conjugate bases are very strong bases.

Lithium and magnesium acetylides 14.6: Synthesis of Alcohols Using Grignard Reagents Grignard reagents react with aldehydes, ketones, and esters to afford alcohols

Grignard reagents react with . . . formaldehyde (H2C=O) to give primary alcohols aldehydes to give secondary alcohols ketones to give tertiary alcohols esters to give tertiary alcohols

14.10: Preparation of Tertiary Alcohols From Esters and Grignard Reagents - mechanism: Reaction of Grignard reagents with CO2 (Lab, Chapter 19.11)

14.7: Synthesis of Alcohols Using Organolithium Reagents Organolithium reagents react with aldehydes, ketones, and esters in the same way that Grignard reagents do. 14.8: Synthesis of Acetylenic Alcohols

Recall from Chapter 9.6 Acetylide anions react with ketones and aldehydes to form a C-C bond; the product is an acetylenic (propargyl) alcohols

14.9: Retrosynthetic Analysis - the process of planning a synthesis by reasoning backward from the the target molecule to a starting compound using known and reliable reactions. “it is a problem solving technique for transforming the structure of a synthetic target molecule (TM) to a sequence of progressively simpler structures along the pathway which ultimately leads to simple or commercially available starting materials for a chemical synthesis.” The transformation of a molecule to a synthetic precursor is accomplished by: Disconnection: the reverse operation to a synthetic reaction; the hypothetical cleavage of a bond back to precursors of the target molecule. Functional Group Interconversion (FGI): the process of converting one functional group into another by substitution, addition, elimination, reduction, or oxidation

Each precursor is then the target molecule for further retrosynthetic analysis. The process is repeated until suitable starting materials are derived. Target molecule Precursors 1 Precursors 2 Starting materials Prepare (Z)-2-hexene from acetylene 2-Phenyl-2-propanol

14.11: Alkane Synthesis Using Organocopper Reagents R2CuLi = R- strong nucleophiles Nucleophilic substitution reactions with alkyl halides and sulfonates (alkylation) H3C(H2C)8H2C-I + (H3C)2CuLi H3C(H2C)8H2C-CH3 + CH3Cu + LiI SN2 reaction of cuprates is best with primary and secondary alkyl halides; tertiary alkyl halides undergo E2 elimination. ether

Vinyl and aryl (but not acetylenic) cuprates

Reaction of cuprates with aryl and vinyl halides 14.13: Carbenes and Carbenoids Carbene: highly reactive intermediate, 6-electron species. The carbon is sp2 hybridized; it possesses a vacant hybridized p-orbital and an sp2 orbital with a non-bonding pair of electrons

Generation and Reaction of Dihalocarbenes: CHCl3 + KOH Cl2C: + H2O + KCl dichlorocarbene Carbenes react with alkenes to give cyclopropanes. The cyclopropanation reaction takes place in a single step. There is NO intermediate. As such, the geometry of the alkene is preserved in the product. Groups that are trans on the alkene will end up trans on the cyclopropane product. Groups that are cis on the alkene will end up cis on the cyclopropane product.

14.12: An Organozinc Reagent for Cyclopropane Synthesis Simmons-Smith Reaction ether CH2I2 + Zn(Cu) I-CH2-Zn-I = H2C: carbene The geometry of the alkene is preserved in the cyclopropanation reaction.

14.14: Transition-Metal Organometallic Compounds (please read) 14.15: Homogeneous Catalytic Hydrogenation (please read) H2, Pd/C - The catalyst is insoluble in the reaction media: heterogeneous catalysis, interfacial reaction H2, (Ph3P)3RhCl - The catalyst is soluble in the reaction media: homogeneous catalysis. 14.16: Olefin Metathesis (please read) 14.17: Ziegler-Natta Catalysis of Alkene Polymerization