Modern nuclear data evaluation: straight from nuclear physics to applications Arjan Koning and Dimitri Rochman NRG Petten, the Netherlands ND-2010 April.

Slides:



Advertisements
Similar presentations
Combined evaluation of PFNS for 235 U(n th,f), 239 Pu(n th,f), 233 U(n th,f) and 252 Cf(sf) (in progress) V.G. Pronyaev Institute of Physics.
Advertisements

EMERALD1: A Systematic Study of Cross Section Library Based Discrepancies in LWR Criticality Calculations Jaakko Leppänen Technical Research Centre of.
Total Monte Carlo and related applications of the TALYS code system Arjan Koning NRG Petten, the Netherlands Technical Meeting on Neutron Cross- Section.
Modeling of Photonuclear Reactions & Transmutation of Long-lived Nuclear Waste in High Photon Fluxes M.-L. GIACRI-MAUBORGNE, D. RIDIKAS, J.-C.
I. Dillmann Institut für Kernphysik, Forschungszentrum Karlsruhe KADoNiS The Sequel to the “Bao et al.” neutron capture compilations.
Status of Fusion Nuclear Data Development Mohamed Sawan Tim Bohm U. Wisconsin-Madison Fusion Neutronics Team.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft L. Mercatali, FZK/IRS IP EUROTRANS Training Course Santiago de Compostela (Spain), June 7-10,
Recent Developments in Geant4 Hadronics Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright.
1Managed by UT-Battelle for the U.S. Department of Energy Simulation of βn Emission From Fission Using Evaluated Nuclear Decay Data Ian Gauld Marco Pigni.
Evaluation and Use of the Prompt Fission Neutron Spectrum and Spectra Covariance Matrices in Criticality and Shielding I. Kodeli1, A. Trkov1, R. Capote2,
U N C L A S S I F I E D LA-UR Current Status of the NJOY Nuclear Data Processing Code System and Initial ENDF/B-VII Data Testing Results Presented.
Report on The Study of (α,n) Neutron Yield and Energy Spectrum Dongming Mei for the AARM collaboration 1.
1 CN formation cross section in nucleon induced reactions on 238 U Efrem Soukhovitski, JINER Frank Dietrich, LLNL Harm Wienke, Belgonucleaire Roberto Capote,
Status and needs of activation data for fusion Robin Forrest 1 and Jura Kopecky 2 1 Euratom/UKAEA Fusion Association Culham Science Centre, UK 2 JUKO Research,
MA and LLFP Transmutation Performance Assessment in the MYRRHA eXperimental ADS P&T: 8th IEM, Las Vegas, Nevada, USA November 9-11, 2004 E. Malambu, W.
TUNL Contributions in the US Nuclear Data Program (USNDP) & Nuclear Structure and Decay Data (NSDD) network Nuclear Structure Data Evaluation Program J.H.
14th Internat. Conf. Nucl. Reaction Mechanisms, Varenna, 19th June PRE-EQUILIBRIUM (EXCITON) MODEL AND THE HEAVY-ION REACTIONS WITH CLUSTER EMISSION.
The Status of Nuclear Data above 20 MeV Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency IAEA’s Technical Meeting on Nuclear Data Libraries.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Association FZK-Euratom Status of Neutronics Tools & Data for IFMIF-EVEDA U. Fischer, S. Simakov.
Status of particle_hp Pedro Arce Emilio Mendoza Daniel Cano-Ott (CIEMAT, Madrid)
© 2013 Organisation for Economic Co-operation and Development © 2015 Organisation for Economic Co-operation and Development 1 Compensating Effects due.
TUNL Review – Dec. 8/9, 2014 TUNL Contributions in the US Nuclear Data Program (USNDP) & Nuclear Structure and Decay Data (NSDD) Network Nuclear Structure.
Lawrence Livermore National Laboratory PREPRO Accomplishments Dermott “Red” Cullen Presented at the Nuclear Criticality Safety Program Technical Conference.
JENDL/HE-2007 & On going Activities for JENDL-4 Japan Atomic Energy Agency S. Kunieda IAEA 1-st RCM of CRP on FENDL-3.0, 2-5 Dec Y. Watanabe Kyushu.
Forschungszentrum Karlsruhe in der Helmholz-Gemeinschaft Karlsruhe Institute of Technology Nuclear Data Library for Advanced Systems – Fusion Devices (FENDL-3)
Current Status of Nuclear Data Processing Activities at KAERI Do Heon KIM Korea Atomic Energy Research Institute Consultants’ Meeting on “The New Evaluated.
Update of uncertainty file in the EAF project J. Kopecky 1 and R.A. Forrest 2 1 JUKO Research, the Netherlands 2 EURATOM/UKAEA Association, Culham, UK.
TENDL for FENDL Arjan Koning NRG Petten, The Netherlands FENDL-3 meeting December 6-9, 2011, IAEA, Vienna.
Nuclear Data for Fission and Fusion Arjan Koning NRG Petten, The Netherlands Post-FISA Workshop Synergy between Fission and Fusion research June ,
FENDL-3 1st Research Co-ordination Meeting, 2-5 December 2008, IAEA, Vienna1 Marilena Avrigeanu Progress on Deuteron-Induced Activation Cross Section Evaluation.
Filling up FENDL with an all-in-one nuclear data evaluation and validation system around TALYS Arjan Koning NRG Petten, The Netherlands FENDL-3 meeting.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority EAF-2010 – the best of a generation Jean-Christophe Sublet, Lee Packer Euratom/CCFE.
DFT Applications Technology to calculate observables Global properties Spectroscopy DFT Solvers Functional form Functional optimization Estimation of theoretical.
Physics Data Libraries: Content and Algorithms for Improved Monte Carlo Simulation Physics data libraries play an important role in Monte Carlo simulation:
Fission cross sections and the dynamics of the fission process F. -J
Activities Nuclear Data Service Yolanda Rugama OECD/NEA.
Nuclear Data Libraries for Advanced Systems: Fusion Devices FENDL-3 IAEA, Vienna, 2-5 December 2008 A Mengoni IAEA Nuclear Data Section.
1 n_TOF data-analysis workshop CERN, Geneva, February 2015 Roberto Capote, IAEA Nuclear Data Section www-nds.iaea.org NUCLEAR.
Status of particle_hp Pedro Arce Emilio Mendoza Daniel Cano-Ott (CIEMAT, Madrid)
ANITA workshop, Uppsala, december 2008 ANITA neutron source Monte Carlo simulations and comparison with experimental data Mitja Majerle Nuclear Physics.
Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical.
© 2013 Organisation for Economic Co-operation and Development © 2015 Organisation for Economic Co-operation and Development 1 WPEC/SG39 Short updates on.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Modern , d, p, n-Induced Activation Transmutation Systems EURATOM/CCFE.
Data Needs in Nuclear Astrophysics, Basel, June 23-25, 2006 Nuclear Astrophysics Resources of the National Nuclear Data Center B. Pritychenko*, M.W. Herman,
KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Institute for Neutron Physics and Reactor Technology Evaluation.
Pavel Oblozinsky NSDD’07, St. Petersburg June 11-15, 2007 ENDF/B-VII.0 Library and Use of ENSDF Pavel Oblozinsky National Nuclear Data Center Brookhaven.
9 th session of the AER Working Group “f “ - Spent Fuel Transmutations Simulations of experimental “ADS” Mitja Majerle, Gael de Cargouet Nuclear Physics.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Association FZK-Euratom Review of IEAF-2001 Cross Section Data Libraries for IFMIF Activation.
KIT – The Research University in the Helmholtz Association INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR) Nuclear Data for Calculation.
Modern nuclear data evaluation: straight from nuclear physics to applications Arjan Koning NRG Petten, the Netherlands April , CIAE, Beijing.
Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas D. Cano-Ott, 6 th Geant4 Space Users Workshop Evaluated neutron cross section.
2. General overview of TALYS Prof. Dr. A.J. (Arjan) Koning 1,2 1 International Atomic Energy Agency, Vienna 2 Division of Applied Nuclear Physics, Department.
E. Mendoza, D.Cano-Ott Nuclear Innovation Unit (CIEMAT)
NNDC Services B. Pritychenko National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY , USA.
1. Nuclear Data Prof. Dr. A.J. (Arjan) Koning1,2
Fusion Neutronics, Nuclear Data, Design & Analyses
Bayesian Monte-Carlo and Experimental Uncertainties
3. The optical model Prof. Dr. A.J. (Arjan) Koning1,2
Shintaro Hashimoto1, Yosuke Iwamoto 1, Tatsuhiko Sato 1, Koji Niita2,
Nuclear reaction simulations with TALYS
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Next Version of JENDL General Purpose File
I.Hill, J.Dyrda, N.Soppera, M.Bossant
Performed experiments Nuclotron – set up ENERGY PLUS TRANSMUTATION
Neutron production in Pb/U assembly irradiated by p+, d+ at 0. 7 – 2
TALYS exercises I Arjan Koning Nuclear Data Section, NAPC
The TALYS nuclear model code I
O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová, V. Wagner
The TALYS nuclear model code II
Presentation transcript:

Modern nuclear data evaluation: straight from nuclear physics to applications Arjan Koning and Dimitri Rochman NRG Petten, the Netherlands ND-2010 April , Jeju, Korea

2 Contents Introduction: A new way of nuclear data evaluation Essence of software development and reproducibility -Example: TALYS code system Implications and possibilities: -Large scale nuclear data library production (TENDL) -“Total” Monte Carlo uncertainty propagation -Validation with integral measurements Conclusions

3 Objective There are limits in our knowledge of nuclear physics: Experimental possibilities and precision Theoretical nuclear structure and reaction models which requires and deserves everlasting support Mantra: let’s at least provide all nuclear physics knowledge we know up to now in a form ready for applications, while maximizing Completeness: no unnecessary omissions Quality: -no unnecessary approximations -with a quantitative measure about our knowledge (uncertainty information) -Satisfactory from differential and integral point of view

4 Nuclear data libraries: up to now During one nuclear data career: Evaluators make mistakes Evaluators improve their methods (less mistakes, more complete ENDF-6 files, covariance data, etc.) New experimental data and better nuclear model codes emerge Up to now, such progress has not been consistently implemented in isotopic data libraries. E.g. : 96-Cm-247 JAERI-ORNL EVAL-OCT05 R.Q. Wright, T.Nakagawa, T.Liu 96-Cm-248 HEDL,SRL,+ EVAL-APR78 Mann,Benjamin,Howerton, + 96-Cm-249 JAERI EVAL-OCT95 T.Nakagawa and T.Liu 96-Cm-250 JAERI EVAL-OCT95 T.Nakagawa and T.Liu 27-Co- 58 NEA RCOM-JUN83 Scientific Co-ordinating Group 27-Co- 58MNEA RCOM-JUN82 Scientific Co-ordination Group 27-Co- 59 ANL,ORNL EVAL-JUL89 A.Smith+,G.Desaussure+ 24-Cr- 50 LANL,ORNL EVAL-OCT97 S.Chiba,M.Chadwick,D.Hetrick and these data libraries are not reproducible

5 Nuclear data libraries: another way Nuclear data knowledge should no longer be assembled in an ENDF-6 nuclear data library, but one level deeper: Resonance parameters + uncertainties An error-free EXFOR database + selection of good data Nuclear models: -A robust, validated, multipurpose nuclear model code -A Reference Input Parameter Library (RIPL) -For important/measured nuclides: A set of adjusted model parameters + uncertainties If needed: per nuclide a script with other actions (copying parts of other libraries, direct inclusion of experiment, etc.) Store the above, and make sure that ENDF formatting, processing and integral validation become robust This yields entirely new possibilities

6 Resonance Parameters. TARES Experimental data (EXFOR) Nucl. model parameters TALYS TEFAL Output ENDF Gen. purpose file ENDF/EAF Activ. file NJOY PROC. CODE MCNP FIS- PACT Nuclear data scheme + covariances -K-eff -Neutron flux -Etc. -activation - transmutation Determ. code Other (ORIGEN) +Uncertainties +Covariances +(Co)variances +Covariances TASMAN Monte Carlo: 1000 TALYS runs

7 Loop over energies and isotopes PRE-EQUILIBRIUM Exciton model Partial densities Kalbach systematic Approx DSD Angular distributions Cluster emissions  emission Exciton model Hauser-Feshbach Fission  cascade Exclusive channels Recoils MULTIPLE EMISSIONSTRUCTURE Abundances Discrete levels Deformations Masses Level densities Resonances Fission parameters Radial matter dens. OPTICAL MODEL Phenomenologic Local or global Semi-Microscopic Tabulated (ECIS) DIRECT REACTION Spherical / DWBA Deformed / Coupled channel Giant Resonances Pickup, stripping, exchange Rotational Vibrational COMPOUND Hauser-Feshbach Fluctuations Fission  Emission Level densities GC + Ignatyuk Tabulated Superfluid Model INPUT projectile n element Fe mass 56 energy 1.2 TALYS code scheme OUTPUT Spectra Cross sections Fission yields DDX Ang. Distr. Astro rates Etc.

8 TALYS-1.2 Released December 21, 2009, see Use of TALYS increasing -Estimated users, publications Some recent improvements for TALYS-1.2: -Better fission + level density model (CEA Bruyeres-le- Chatel) -The option to easily/safely store the best input parameter set per nucleus (“best y”) -More flexibility for covariance development and adjustment to experimental data TALYS can be used for -In-depth nuclide/reaction analyses -Global multi-nuclide calculations -These two are now being merged

9 Resonance Parameters. TARES Experimental data (EXFOR) Nucl. model parameters TALYS TEFAL Output ENDF Gen. purpose file ENDF/EAF Activ. file NJOY PROC. CODE MCNP FIS- PACT Nuclear data scheme + covariances -K-eff -Neutron flux -Etc. -activation - transmutation Determ. code Other (ORIGEN) +Uncertainties +Covariances +(Co)variances +Covariances TASMAN Monte Carlo: 1000 TALYS runs

10 Uncertainties with Monte Carlo Standard procedure (Don Smith): Determine uncertainty range for each nuclear model parameter Perform K(=1000) TALYS calculations with all parameters randomly sampled around their central values Covariance matrix for cross sections i and j: Various refinements possible: -Reject outlying results (leads to parameter correlations) -More precise inclusion of experimental data (Unified MC, D. Smith, H. Leeb), backward-forward MC (E. Bauge), etc.

11 Uncertainties for Cu isotopes

12 Resonance Parameters. TARES Experimental data (EXFOR) Nucl. model parameters TALYS TEFAL Output ENDF Gen. purpose file ENDF/EAF Activ. file NJOY PROC. CODE MCNP FIS- PACT Nuclear data scheme + covariances -K-eff -Neutron flux -Etc. -activation - transmutation Determ. code Other (ORIGEN) +Uncertainties +Covariances +(Co)variances +Covariances TASMAN Monte Carlo: 1000 TALYS runs

13 Application 1: TENDL TALYS Evaluated Nuclear Data Library, n, p, d, t,h, a and g libraries in ENDF-6 format 2400 nuclides (all with lifetime > 1 sec.) up to 200 MeV Neutrons: complete covariance data (MF31-MF35) MCNP-libraries (n,p and d) and multi-group covariances (n only) Production time: 2 months (40 processors) Strategy: Always ensure completeness, global improvement in 2010, Extra effort for important nuclides, especially when high precision is required (e.g. actinides): adjusted parameters (data fitting). These input files per nuclide are stored for future use. All libraries are always reproducible from scratch The ENDF-6 libraries are created, not manually touched Zeroing in on the truth for the whole nuclide chart at once

14 TENDL users European Activation File (EAF): > 95% TALYS/TENDL based Fusion Evaluated Nuclear Data Library (FENDL) -Missing nuclides, high energies, covariances, protons and deuterons Joint Evaluated Fission and Fusion file (JEFF) -Missing nuclides (JEFF-3.2), protons and deuterons NEA Data Bank: Janis (E. Dupont, N. Soppera) IAEA: visualisation system (V. Zerkin) Fusion/IFMIF research (Sanz, Sauvan): protons and deuterons Many downloads from So far, TENDL is adopted “when nothing else exists”, but a lot of effort has been devoted to nuclide-by-nuclide neutron evaluations. We can, and will, be more ambitious!

15 TENDL: Complete ENDF-6 data libraries MF1: description and average fission quantities MF2: resonance data MF3: cross sections MF4: angular distributions MF5: energy spectra MF6: double-differential spectra, particle yields and residual products MF8-10: isomeric cross sections and ratios MF12-15: gamma yields, spectra and angular distributions MF31: covariances of average fission quantities (TENDL-2010) MF32: covariances of resonance parameters MF33: covariances of cross sections MF34: covariances of angular distributions MF35: covariances of fission neutron spectra (TENDL-2010) and particle spectra (TENDL-2011) MF40: covariances of isomeric data (TENDL-2011)

16 IAEA covariance visualisation system (V. Zerkin)

17

18

19

20

21 Quality of proton data (EXFOR vs MCNPX, A. Konobeyev, KIT) ENDF/B-VII-p (LA-150): nuclides TENDL-2009: 1170 nuclides (Chi-2) ( ) (H x F)

22 Other TENDL(-related) results -Astrophysical reaction rates for 4000 nuclides (Stephane Goriely) -Human-readable tables for normal nuclear physicists. Some possibilities: -Validation of the entire EXFOR -Complete table of all medical isotope production routes for all nuclides (“inverse search”) -Comparison with specific measurements -Etc.

23 Application 2: “Total” Monte Carlo Propagating covariance data is an approximation of true uncertainty propagation (especially regarding ENDF-6 format limitations) Covariance data requires extra processing and “satellite software” for application codes Alternative: Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop. (Koning and Rochman, Ann Nuc En 35, 2024 (2008)

24 Resonance Parameters. TARES Experimental data (EXFOR) Nucl. model parameters TALYS TEFAL Output ENDF Gen. purpose file ENDF/EAF Activ. file NJOY PROC. CODE MCNP FIS- PACT Nuclear data scheme + covariances -K-eff -Neutron flux -Etc. -activation - transmutation Determ. code Other (ORIGEN) +Uncertainties +Covariances +(Co)variances +Covariances TASMAN Monte Carlo: 1000 TALYS runs

25 Resonance Parameters. TARES Experimental data (EXFOR) Nucl. model parameters TALYS TEFAL Output ENDF Gen. purpose file ENDF/EAF Activ. file NJOY PROC. CODE MCNP FIS- PACT Nuclear data scheme: Total Monte Carlo -K-eff -Neutron flux -Etc. - activation - transmutation Determ. code Other codes +Uncertainties +Covariances TASMAN Monte Carlo: 1000 runs of all codes

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 Covariance versus Total Monte Carlo Advantages:Advantages: - Relatively quick- Exact - Use in sensitivity study- Requires only “main” software - Easier release (TENDL) Disadvantages:Disadvantages: - Approximative (cross-correlations)- (Computer) time consuming - No covariance for gamma production,- Backward (sensitivity) route DDX (MF36), etc. not obvious - Requires special processing - Requires covariance software for application codes

50 Application: criticality benchmarks Total of random ENDF-6 files Sometimes deviation from Gaussian shape Rochman, Koning, van der Marck Ann Nuc En 36, 810 (2009) Yields uncertainties on benchmarks

51 Application: SFR void coefficient KALIMER-600 Sodium Fast Reactor (Korea) Total Monte Carlo with MCNP Uncertainties due to Na alone: D. Rochman et al NIM A612, 374 (2010) Uncertainties due to major actinides: see D. Rochman presentation Extension to SFR burn-up underway

52

53 TMC: Other possibilities Random thermal scattering data libraries (?) Random decay data libraries Random fission yield libraries Normalization to experimental data or other nuclear data libraries at the basic input level (in progress) Optimization to integral benchmarks using e.g. simulated annealing (“search for the best random file”)

54 Conclusions The lifetime of the Nuclear Data Cycle (from basic data to applications and back) can be strongly reduced, even using existing formats and tools. The secret: Make everything reproducible from the start. Ingredients: -Selected experimental data from EXFOR (if available) -TALYS input parameters + uncertainties (or default) -Resonance parameters + uncertainties (if available) -Nuclide specific scripts (if needed) After some serious software development you can reproduce everything from that The first two applications -Talys Evaluated Nuclear Data Library (TENDL) -Total Monte Carlo uncertainty propagation

55 Conclusions The system is in place, from now on the main challenges are at the beginning of the cycle, e.g.: Better evaluations per nuclide Merge experimental + theoretical uncertainty methods (“Unified Monte Carlo”) Of course, this approach does not take away the need for progress in measurements, theory development, ENDF formatting, processing and validation, but any progress will have impact directly through the entire chain, and for all nuclides (reproducibility!)

56 Acknowledgements NRG Petten: Dimitri Rochman, Marieke Duijvestijn CEA-Bruyeres-le-Chatel: Stephane Hilaire, Eric Bauge, Pascal Romain Univ. Libre Bruxelles: Stephane Goriely CEA Saclay: Jacques Raynal IRMM Geel: Arjan Plompen IAEA: Roberto Capote JUKO research: Jura Kopecky All TALYS users for their feedback

57 The final spin-off: Is the challenge for ENDF/B-VII, JEFF, JENDL, CENDL and FENDL to stay ahead. We’ll meet again in ND-2013!