1 Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal.

Slides:



Advertisements
Similar presentations
1H NMR Chemical shift (δ) depends on molecular structure and solvent
Advertisements

Asymmetric ketone and imine reductions using ruthenium catalysts Jonathan Hopewell, José E. D. Martins and Martin Wills* 1) M. Wills, D. S. Matharu and.
Determination of Protein Structure. Methods for Determining Structures X-ray crystallography – uses an X-ray diffraction pattern and electron density.
Selectivity in an Encapsulated Cycloaddition Reaction Jian Chen and Julius Rebek,Jr. Org. Lett. 2002, 4, Tobe laboratory Shintaro Itano.
1 Mass Spectrometry Part 1 Lecture Supplement: Take one handout from the stage.
Electron Spin Resonance Spectroscopy
2DNMR. Coupling Constants Geminal Coupling are usually negative: CH 2 Vicinal coupling usually positive: CH-CH Why? Coupling is through bonding electrons;
Fujita et al., Fujita et al. Nature, 1994.
The molecular formula is C 5 H 8. What is the structure?
1 Abstract: Cycloaddition of bromomalonates to Y 3 80 unexpectedly gave rise to fulleroid derivatives with unusually high stability. Complete characterization.
1 CHEM 212 – NMR Spectroscopy Spring Spectral Analysis – 1 H NMRNMR Spectroscopy NMR Spectral Analysis – Introductory 1 H NMR 1.NMR is rarely.
Nanostructural Architectures from Molecular Building Blocks.
Carbon-13 Nuclear Magnetic Resonance
Lecture 2a Optical Purity.
Chemical Kinetics in Amine Containing Monodentate and Bidentate Cobalt Ligands Andrew McTammany + H 2 O  + Cl -
NMR Applications in Chemistry
Blue-Colored Donor-Acceptor [2]Rotaxane Taichi Ikeda, Ivan Aprahamian, and J. Fraser Stoddart, Org. Lett. 2007, 9, Kazuhiro IKUTA Tobe Lab.
Spectroscopy Problems
Real-time multidimensional NMR follows RNA folding with second resolution PNAS, 2010, vol. 107, no. 20, 9192–9197 Zeinab Mokhtari 1-Dec-2010.
Department of Chemistry A state-of-the-art instrumental park is available to purify and characterize the synthesized molecules The research activities.
Nuclear Magnetic Resonance in Structural Biology Part I the physical principle the physical principle the spectrometer the spectrometer the NMR spectrum.
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
Mechanostereochemistry and the mechanical bond by Gokhan Barin, Ross S. Forgan, and J. Fraser Stoddart Proceedings A Volume 468(2146): October.
Che 440/540 2D-NMR
Wybren Jan Buma Molecular Photonics van ‘t Hoff Institute for Molecular Sciences University of Amsterdam Mechanically interlocked molecules in the gas.
Mass Spectroscopy Mass spectroscopy is a powerful tool in organic chemistry that can be used to provide information about the molecular formula and structural.
Catenane A Catenane is a mechanically-interlocked molecular architecture consisting of two or more interlocked macrocycles. They are analogous to bike.
1 Structures, Photoluminescence, and Reversible Vapoluminescence Properties of Neutral Platinum(II) Complexes Containing Extended π- Conjugated Cyclometalated.
Development of rotaxane type molecular ratchets M1 Ryo Takabayashi, Tobe laboratory Division of Frontier Materials Science, Department of Materials Engineering.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Kirill P. Birin, Yulia G. Gorbunova, Aslan Yu. Tsivadze Lviv, 2010.
1 Cyclic Tetranuclear and Hexanuclear Palladium(II) Complexes and Their Host-guest Chemistry Judith A. Walmsley,* Shourong Zhu, Antonio Matilla, Tiffanee.
V ARIOS S YNTHESIS M ETHOD OF S UPRAMOLECULAR T RIANGLE F ORM V ARIOS S YNTHESIS M ETHOD OF S UPRAMOLECULAR T RIANGLE F ORM Group 1. Dong Hoon Kim, Min.
Design and Synthesis of Calixarene Scaffolds Bearing Hydrogen Bond Motifs Farzad Fani-Pakdel and Jason R. Telford Department of Chemistry, University of.
Assignments of Hydrogen and Carbon Atoms of Artemisinin
Nanochemistry NAN 601 Dr. Marinella Sandros
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Manfred Scheer Coordination Chemistry of Phosphorous Containing Compounds Angela Dann May 8, 2006.
1 13 C-NMR, 2D-NMR, and MRI Lecture Supplement: Take one handout from the stage.
0-D, 1-D, 2-D Structures (not a chapter in our book!)
Spectral Interpretation General Process for Structure Elucidation of an Unknown Nat. Prod. Rep., 1999, 16,
Mono-, Di-, and Trinuclear Luminescent Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes Derived from the Picolyl- Substituted Methylimidazolium Salt:
INFARED SPECTROSCOPY OF Mn(CO 2 ) n − CLUSTER ANIONS Michael C Thompson, Jacob Ramsay and J. Mathias Weber June 24, th International Symposium.
Stabilizing Transition Metal-Arylthiolate Bonds via Secondary Sphere Hydrogen Bonding Ryan L. Hall and Samuel Pazicni. Department of Chemistry, University.
Chapter 9 Coordination Chemistry I
2D NMR.
Chem. 1B – 11/15 Lecture.
CHEM 212 – NMR Spectroscopy
Chapter 15 Structure Determination by Spectroscopy (II): UV-Vis & Mass
Bonding Weaker than Covalent
Novel Organic-Inorganic Hybrid Cage Architectures
An Investigation of Chiral Recognition in Electrokinetic Chromatography by means of NMR Spectroscopy NMR spectroscopy was used to characterize the interactions.
Investigation of the Effect of Ligands on Metal-to-Ligand Charge Transfer Transitions using d10-complexes of Group 11 Elements Evangelos Rossis, Roy Planalp,
Controlling Binding Affinities for Anions
Use through bond or through space interactions to assign structure
Stoddart et al
The host template and the guest molecule which form the helix
Self-Assembly of M30L60 Icosidodecahedron
INFRARED SPECTRA OF ANIONIC COBALT-CARBON DIOXIDE CLUSTERS
1H NMR Interpretation Number of Signals (Resonances)
Lotta Turunen, Ulrike Warzok, Christoph A. Schalley, Kari Rissanen 
Mass Spectroscopy Mass spectroscopy is a powerful tool in organic chemistry that can be used to provide information about the molecular formula and structural.
Volume 3, Issue 6, Pages (December 2017)
by Alexandra Velian, and Christopher C. Cummins
Molecular Borromean Rings
Introduction to NMR Spectroscopy
Formulas Molecular formula represents the numbers and types of atoms in a molecule H2O, C6H12O6 Structural formula gives the arrangement of atoms 3-D models.
Volume 3, Issue 6, Pages (December 2017)
Introduction to NMR Spectroscopy
Introduction to NMR Spectroscopy
Presentation transcript:

1 Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal Structures of [3]Catenanes Based on Pd or Pt Dinuclear Metallocycles Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela* J. Am. Chem. Soc. 2007, 129, Speaker: 黃仁鴻

2 Synthesis of [n]Catenanes 1.π-Donor/π-Acceptor complexes 2.Hydrogen bond interactions 3.Anion templation 4.Metal complexation

3 A Chemically-Switchable [2]Catenane Figure 1. The [2]catenane 1 4+ and the translational isomers (2A 4+ and 2B 4+ ) of the [2]catenane Balzani, V.; Credi, A.; Langford, S. J.; Raymo, F. M.; Stoddart, J. F.;Venturi, M. J. Am. Chem. Soc. 2000, 122, ab c

4 Amide-Based Interlocked Compounds Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.

5 Anion-Templated Assembly of a [2]Catenane Sambrook, M.; Wisner, J. A.; Paul, R. L.; Cowley, A. R.; Szemes, F.; Beer,P. D. J. Am. Chem. Soc. 2004, 126, Figure 2. Strategy for assembly of [2]-catenanes via anion templation.

6 Figure 3. Synthesis of a catenane using an octahedral metal atom and three bidentate chelates: construction principle. Chambron, J.-C.; Collin, J.-P.; Heitz, V.;Jouvenot, D.; Kern, J.-M.; Mobian, P.; Pomeranc, D.; Sauvage, J.-P. Eur. J. Org. Chem. 2004, Catenanes Built Around Octahedral Transition Metals

7 Synthesis of [n]Catenanes 1.π-Donor/π-Acceptor complexes 2.Hydrogen bond interactions 3.Anion templation 4.Metal complexation

8 Structures of Molecular Components Used in This Work

9 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

10 Synthesis of Dinuclear Molecular Squares 3a,b

11 1 H NMR Spectrum of 3a·4OTf·4PF 6 a a 8.99 ppm △ 8.91 ppm 8H 4H 8H

12 13 C NMR Spectrum of 3a·4OTf·4PF 6 DEPT-135 CH 2 C C a b c d i g e f h CH

13 HSQC Spectrum of 3a·4OTf·4PF 6 a b c d i g e f h i Heteronuclear Single Quantum Coherence 1 H- 13 C 1 J 1 H NMR 13 C NMR a a h

14 COSY Spectrum of 3a·4OTf·4PF 6 a b c d i g e f h 1 H NMR COrrelation SpectroscopY 1 H- 1 H 3 J h i i h b a a b g g e f

15 HMBC Spectrum of 3a·4OTf·4PF 6 a b c d i g e f h 13 C NMR 1 H NMR Heteronuclear Multiple Bond Coherence 1 H- 13 C 1 J, 2 J, 3 J g f b a a c

16 a b ppm ppm a b c c ppm Δδ=1.6 ppm Δδ=3.1 ppm Δδ=3.5 ppm f abe g h i d f e g h a b c d i g e f h 1 H & 13 C NMR Spectra of 3a·4OTf·4PF 6

17 1 H NMR Spectra of 1·2PF 6 and 2a at Different Concentrations 10 mM 5 mM 2.5 mM 0.5 mM 1·2PF 6

18 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

19 Rotaxane

20 Crystal Structure of Pseudorotaxane Complex between 1·2PF 6 and DB24C8 a2.52 Å149° b2.26 Å167° c2.21 Å167° d2.37 Å168° [H…O] distances[C-H…O] angle

21 1 H NMR Spectrum of DB24C8-1·2PF 6 Pseudorotaxane g f Δδ=0.40 ppm Δδ=0.30 ppm

22 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

23 Crystal Structure of The [3]Catenane (BPP3410) 2 -(3a) 3.83 Å

24 Partial 1 H NMR Spectra of Metallocycle 3a and (BPP34C10) 2 -(3a) Figure 2. Partial 1 H NMR (CD 3 CN, 500 MHz) spectra of metallocycle 3a (top) and (BPP34C10) 2 -(3a) at 237 K (bottom). Δδ= -0.7ppm Δδ= -0.1ppm Δδ= -0.3ppm a b e f

25 Electrospray Ionization Mass Spectrometry Figure 4. Observed (top) and theoretical (bottom) isotopic distribution for the fragment [(BPP34C10) 2 -(3b) - 3PF 6 ] +3. Isotope % H 1(100.0%) C 12(98.9%) 13(1.1%) N 14(99.6%) 15(0.4%) O 16(99.8%) 18(0.2%) F 19(100.0%) P 31(100.0%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) [(BPP34C10) 2 -(3b) - 3PF 6 ] +3

26 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

27 1 H NMR Spectra of (DB24C8) 2 -(3a) Figure 5. Partial 1 H NMR (CD 3 CN, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) 3a (5 mM) + DB24C8 (10 mM), and (c) 3a (5 mM) + DB24C8(20 mM).

28 Crystal Structure of [3]Catenane (DB24C8) 2 -(3a)

29 Reversible Catenation of (DB24C8) 2 -(3a) Figure 6. 1 H NMR (CD 3 CN, 300 MHz, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) solution (a) + DB24C8 (20 mM), (c) solution (b) + KPF 6 (20 mM), (d) solution (c) + 18C6 (20 mM).

30 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

31 Crystal Structure of (DN38C10) 2 -(3a)

32 Crystal Structure of (DN38C10) 2 -(3b)

33 Conclusions 1.Ligand 1 ‧ 2PF6 threads through the cavity of DB24C8 to generate a [2]pseudorotaxane that is stabilized principally by hydrogen-bonding interactions. 2.The solid-state structure of catenane (DB24C8) 2 -(3a) revealed that the Pd(en) corners of metallocycle are capped with two additional polyether cyclophanes to form a supramolecular complex composed of eight components. 3.The catenation process of (DB24C8) 2 -(3a) can be switched off and on in a controllable manner by successive addition of KPF 6 and 18-crown-6.

34 Conclusions(continued) 4.The reported catenanes are composed of a dinuclear molecular square bridged by ligand 1 ‧ 2PF 6 interpenetrated by two polyether macrorings. 5.X-ray crystallography in combination with NMR studies showed that π-πstacking and [C-H…π] interactions in addition to [C-H…O]hydrogen bonds are the noncovalent forces that stabilize the [3]catenanes.

35 Thanks for Your Attention!!

36 Structure of [3]-(DB24C8) 2 -(3b) Catenane Figure S49. View of the molecular structure of [3]-(DB24C8) 2 - (3b) catenane showing 50% probability displacement ellipsoids. H atoms, counterions and solvent molecules are omitted for clarity.

37 g g b b e e f f h h

38 e f e f

39 1 H NMR Spectrum of 3a·4OTf·4PF 6 a a 8.99 ppm a b c d i g e f h