1 Spring 2004 Chap 11. Non-Radical Addition Polymerization 1) Initiation - Nucleophilic initiators A. Metal amides B. Alkoxides, alkyls, aryls, hydroxides,

Slides:



Advertisements
Similar presentations
Functional Groups, Orbitals, and Geometry. Resonance Structures.
Advertisements

CHAPTER 9 CONCURRENT ENROLLMENT. ACIDS AND BASES WEAK ACIDS AND BASES ONLY A FEW IONS ARE FORMED DEFINITIONS –Arrhenius - Acid contains H + ions and Bases.
Acids and Bases Part 2. Classifying Acids and Bases Arrhenius Acid ◦ Increases hydrogen ions (H + ) in water ◦ Creates H 3 O + (hydronium) Base ◦ Increases.
Preparation of Alkyl Halides (schematic)
Hanyang Univ. Spring 2008 Chap 9. Chain-growth Polymerization Chain-Growth Polymerization (Addition) Processes 1. Free radical Initiation Processes 2.
Chapter 3: Acid-Base Chemistry Reaction Classification: Substitution: Addition: Elimination: Rearrangement: We’ll deal with these later…
Organic Reactions Dr. M. Abd-Elhakeem Faculty of Biotechnology Organic Chemistry Chapter 3.
Intermolecular a-alkylation and acetoacetic and malonic ester
Chapter 20 Carboxylic Acids and Nitriles
Organometallic Compounds Chapter 15. Carbon Nucleophiles: Critical in making larger organic molecules. Review some of the ones that we have talked about….
1 Chapter 18 Chapter 18 Additions to the Carbonyl Groups Addition to the carbonyl group also occurs at the carbon of a carbonyl groups which is also electrophilic.
Chapter 3- Acids and Bases An Introduction to organic reactions and their mechanisms.
4 4-1 Organic Chemistry William H. Brown & Christopher S. Foote.
Chapter 3 An Introduction to Organic Reactions: Acids and Bases
Amines.  Amines are formed by replacing one or more hydrogen atoms of ammonia (NH 3 ) with alkyl groups.  In nature, they occur among proteins, vitamins,
1 Polymer chemistry Polymer chemistry 2 Chapter 3 RADICAL POLYMERIZATION 3.1 Mechanism of Radical Polymerization 3.2 Initiators and Initiation 3.3 Rate.
Kayden Evans Taylor Segell Gabriela Torres 5p ETHER.
Chapter 20 Carboxylic Acids
Chapter 10 Carboxylic Acids 1Chapter Introduction Carbonyl (-C=O) and hydroxyl (-OH) on the same carbon is carboxyl group. Carboxyl group is usually.
4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson.
1 Acids and Bases Chapter Why are lemons sour?
Sample Problem 4. A mixture of 1.6 g of methane and 1.5 g of ethane are chlorinated for a short time. The moles of methyl chloride produced is equal.
Benzene and its Derivatives
ALCOHOLS Dr. Sheppard CHEM 2412 Summer 2015 Klein (2 nd ed.) sections 13.1, 13.2, 13.3, 13.5, 13.4, 13.6, 13.7, 13.10, 13.9,
Methods of Free Radical Polymerization
Hanyang Univ. Spring 2008 Chap 10. Non-Radical Addition Polymerization Anionic Polymerization -the growing chain end bears a negative charge The mechanism.
Aim: What are functional groups?. Isomers Compounds that have the same molecular formula but have different structural formulas and different names; isomers.
Chapter 7. Ionic polymerization
Chemistry 101 : Chap. 4 Aqueous Reactions and Solution Stoichiometry (1) General Properties of Aqueous Solutions (2) Precipitation Reactions (3) Acid-Base.
Chapter 1 An Introduction to Organic Reactions Nabila Al- Jaber
Chemical Bonding When chemicals form bonds they do so in a way to have the most stable arrangement of their electrons Noble gases are unreactive because.
Ionic Polymerization.
CH 20: Carboxylic Acids and Nitriles Renee Y. Becker CHM 2211 Valencia Community College 1.
Reactions in Solution The most important substance on earth is water. In chemistry, water is necessary for many reactions to take place. Table salt (NaCl)
Chapter 22. Carbonyl Alpha- Substitution Reactions Based on McMurry’s Organic Chemistry, 6 th edition.
Chapter 12 Carboxylic Acids. Chapter 202 Introduction Carbonyl (-C=O) and hydroxyl (-OH) on the same carbon is carboxyl group. Carboxyl group is usually.
Hanyang Univ. Spring 2006 Chap 11. Non-Radical Addition Polymerization General Scheme Anionic Polymerization.
Chemistry. Organic Compounds Containing Oxygen - III Session.
Solutions and Solubility Notes. I. Solutions A. Solutions are also known as homogeneous mixtures. (mixed evenly; uniform)
Mechanisms of organic reactions. How Organic Reactions Occur Homolytic bond breaking (radical): A-B  A  + B  radicals are formed Heterolytic bond breaking.
Carbonyl Alpha-Substitution Reactions
9-1 Chapter 9 Nucleophilic Substitution &  -Elimination 1. Nucleophilic Aliphatic Substitution 2. Solvents for Nucleophilic Substitution Reactions 3.
CHEM514 COPOLYMERS AND POLYMER BLENDS Radical Copolymerization.
Chap 10. Chain-growth Polymerization
Chap 11. Free Radical Copolymerization
Aromaticity: Reactions of Benzene and Substituted Benzenes
Polymerization Introduction Radical polymerization
Chapter 20: Carboxylic Acids and Nitriles Based on McMurry’s Organic Chemistry, 6 th edition ©2003 Ronald Kluger Department of Chemistry University of.
Carboxylic Acids. Introduction The functional group of carboxylic acids consists of a C=O with -OH bonded to the same carbon. Carboxyl group is usually.
Ionic Polymerization.
Chapter 20: Carboxylic Acids and Nitriles
Chapter 10 Carboxylic Acids
Chapter 4, Part II: Solution Chemistry
Chapter 22 Carbonyl Alpha-Substitution Reactions
Covalent Bonds Covalent bond
Acids and Bases Unit 3.
Chapter 10 Carboxylic Acids
Chapter 12 Carboxylic Acids
Chapter 3: Chemical Compounds
Part 5: SN1 & SN2; Elimination & Condensation Rxns
Part 5: SN1 & SN2; Elimination & Condensation Rxns
William H. Brown Christopher S. Foote Brent L. Iverson
Chapter 3 An Introduction to Organic Reactions: Acids and Bases
Organic Chemistry II Chapter 22 Carbonyl Alpha-Substitution Reactions
Chapter 20: Carboxylic Acids and Nitriles
Chapter 5 Ionic Chain Polymerization
Reaction Mechanism in Aromatic hydrocarbons Batch: 2nd Semester Prof
22-1 Chapter 22 Reaction of Benzene and its Derivatives.
Cationic Polymerization Polymer Chemistry Teacher: Ph.D Ramil R
Chapter 20: Carboxylic Acids and Nitriles
Presentation transcript:

1 Spring 2004 Chap 11. Non-Radical Addition Polymerization 1) Initiation - Nucleophilic initiators A. Metal amides B. Alkoxides, alkyls, aryls, hydroxides, cyanides Generally Anionic Polymerization 또한 electron transfer 도 가능

2 Spring 2004 Anionic Polymerization - Electron Transfer Agents Naphthalene Anion-radical (colored greenish blue) Resonance hybrid styryl radical-anion 개시반응 매우 빠름. 2 분자반응 양상을 띰.

3 Spring 2004 Anionic Polymerization 2 양끝에서 성장이 일어남. 2Na + Na + Coupled  이 반응은 ESR 측정에 의해 확인되며 모노머를 넣으면 즉시 라디칼이 완전소멸됨을 나타냄. 양말단이 (-) charge 일때 보다 charge 가 0 인 경우가 훨씬 더 안정함. Red Color

4 Spring 2004 Anionic Polymerization 2) Anionic Polymerization 특 징 (1) 통상 성장 anion 이 ion 으로 존재하지 않고 ion pair(gegenion or counter ion or zwitter ion) 으로 존재함.Counter ion or gegenion 이온 중합은 라디칼 중합보다 훨씬 더 복잡. (2) 일반적으로 저온에서 반응 속도가 빠름. (3) Termination 이 없음. (Termination 은 우연히 일어남.) Termination 이 일어나면 용매의 proton 이나 transfer agent 에 의해 즉, segment 의 이동에 의해 일어남. Counter ion or gegenion

5 Spring 2004 Anionic Polymerization 3) Termination H 2 O 나 ethanol 같은 proton donor 에 의해, (1) Strong base 이지만 다시 개시반응을 일으키기 충분치 않음 (2) C tr,s =10 -3 (small chain transfer constant) EtOH 존재하에서는 반응이 high MW product 를 낼 수 있음. 그러나 ethoxide 는 사슬 끝과 반응하여 중합이 no longer living. Strong base 이지만 다시 개시반응을 일으키기 충분치 않음. H 2 O C tr,s =10 H 2 O low MW polymer No living polymer

6 Spring 2004 Anionic Polymerization (3) 불순물들이 없더라도 termination 은 hydride elimination 에 의해 일어날 수 있다. a) b) anionic species(active center) 가 chain ends 와 반응하여 inactive 한 allylic anion 들을 생성. 1,3 diphenylallyl anion very unreactive, highly resonance stabilized

7 Spring 2004 Anionic Polymerization Polar monomer 들의 Termination 이 경우는 initiator 나 active center 가 monomer 를 공격하지만 non-polymerization 의미. 그러나 중합반응이 끝남

8 Spring 2004 Anionic Polymerization Backbiting 또는 intramolecular rexn 이 일어남. 4) Hugginson-Wooding System J.Chem. Soc Polymerization of styrene conducted in liq. NH3 at bp -33  C - 관찰 (1) 반응속도 ↑ as [I] and [M] 2 I=K+NH 2 - 속도 ↑ as [NH 2 - ] ↑ but as [K + ] ↓ (2) MW 는  [K + ] and [NH 2 - ] (3) 고분자가 unsaturation 없이 형성 Cyclic trimer at the end of chain

9 Spring 2004 Anionic Polymerization  [K + ] 를 가하면 R i  Dissociation of initiator Initiation step

10 Spring 2004 Propagation Anionic Polymerization Termination Occurs by chain transfer Rtr=ktr,s[M-][NH3+] Overall Rate using Steady state assumption. (R i  R t ). KCl 을 넣으면 ?  R p slow down [K + ]=[NH 2 - ]

11 Spring 2004 Anionic Polymerization 물이 없으면, Chain transfer constant for solvent Activation energy for X n

12 Spring 2004 Anionic Polymerization Flory 가 지적하기를 정지반응이 없게 되면 narrow MW distribution 을 얻을 수 있다. 5) Base Initiated Polymerization 치환기들이 매우 중요. 결국 nucleophilic substituents 의 electron withdrowing substituents 가 initiator 들에 가장 반응성이 좋음. 2-nitropentene 등은 KHCO 3 (potassium bicarbonate) 같은 것들에 의해서도 개시됨. –NO 2 는 매우 e - withdrawing 해서 anion 을 안정화시킴.  

13 Spring 2004 Anionic Polymerization 6) Practical Comments If we use metal as an initiator propagation rate is fast. purity import! 7) Propagation Kinetics 라디칼 중합에 비해 propagation 은 그다지 빠르지 않음. 많은 living polymer 들에 대해 [M: - ] = [I] [M  ] = is about to molar [M: - ] = to molar k p for free radical case is 5  10 3 l/mole  sec K p 는 solvent 와 counter ion 에 dependent! solvent 를 변화 시키므로 해서 counter ion 을 active center 와 분리시킬 수 있다.  rate 상승을 기대. conc. of anion = conc. of initiaor

14 Spring 2004 Anionic Polymerization Odian 5-9 Table 3800 What’s going on? 5.51,2 dimethoxy ethane (Diburane) THF 52.2Dioxane 22.2Benzene kk  Solvent For further details about Anionic Polymerization Click next homepage. Surfing to the internet

15 Spring 2004 Anionic Polymerization (1) Evaluatation of Individual Propagation Rate Constants Propagation rate constant for free ion and ion pair. [P - ]:conc. of free ion [P - (C + )]: conc. of ion pair

16 Spring 2004 Anionic Polymerization * How to measure kp , kp, K ? t

17 Spring 2004 Anionic Polymerization Conc. of living and conc. of free ion A salt that must be soluble in THF with common ion to gegen ion is added to reaction mixture. [C + ]  [CZ] At high added salt conc. Conc. of added salt is [CZ] Now Then able to get k p -, k p , K from two graphs.

18 Spring 2004 Anionic Polymerization Effect of gegen ion on Anionic Polymerization of Styrene THFDioxane kpkp K  10 7 kp-kp- kpkp Li  Na K+K+ 60~ Rb+Rb+ 50~ CS+CS Why kp- is the same value? ; kp- is much more larger than kp  Thus we can say that reactivity of free ion is much greater than that of ion pairs. - In the case of dioxane? ;In dioxane which is not tend to be solvating it has reverse tendency compared to the case of THF. Solvation is not important in dioxane. Cs is too big that there is no difference. Explanation is that there is not so solvating power of Cs

19 Spring 2004 Anionic Polymerization Look at difference. Unassociated species Li + genenion in aromatic hydrocarbon Let’s say we are using BuLi initiator. 결국 solvation as well as  is important! 1,2 diethoxyethane 은  을 낮추게 되지만 highly solvating ether 이므로 k p varies 1~1000 fold. Sty in THF, free ion 의 역할이 큼. Reactivity of free ion 이 ion pair 의 reactivity 보다 큼. In aromatic hydrocarbon Unassociated species dominate rate. 이전의 경우는 free ion 이 속도를 결정했으나 이 경우는 unassociated species 만이 속도를 결정한다. (very low conc.) Covalent character

20 Spring 2004 Anionic Polymerization Evidence — viscosity measurement before and after term we find that living polymer is associated after termination, viscosity drops. 고분자 혼합물에 개시제를 가하면 R i 는 1/6 승에 비례하게 된다. Aliphatic HC 내에서의 중합반응은 aromatic HC 내에서 보다 훨씬 낮다. 왜냐하면 개시제와 ion pair 들의 dissociation 이 적어지기 때문.

21 Spring ) Copolymerization of Butadiene-Styrene Complex Observation k p for styrene is higher than k p for butadiene initiated by BuLi But St feed 에서 initial polymer 는 비극성 용매에서는 모두 polybutadiene (ether 나 amine 을 조금 가하면, 상황은 반대로 됨 - 즉 St 이 초기공중합체 조성을 dominate 함 ). Butadiene solvated initiator 그리하여 butadiene 이 exhausted 되고 그 다음 St 이 첨가. 결국 이것이 입체적으로 styrene 을 block out 시킨다. Morton in Case Western 은 ordinary copolymerization theory 를 주장. Anionic Polymerization

22 Spring 2004 Styryl anion(M 2 ) 가 BDE(Butadiene M 1 ) 에 cross propagation 할 수 있는 반응은 매우 빠름. 즉 k 21 이 매우 높다. k 11 =6.6  k 22 =3.2  k 12 =2.4  k 21  0.8 이 경우는 두 모노머 모두가 solvent-sensitive 하고 특히 Lewise 염인 용매와 온도에 민감한 solvent 존재하에서 그렇다. 1-3 butadiene 과 isoprene 경우도 마찬가지. Anionic Polymerization

23 Spring 2004 Effect of solvent and gengenion on Copolymerization of Styrene and isoprene at 25  C Solvent % Styrene in copolymer Na + counter ionLi + counter ion Nonsolvent6615 Benzene6615 Triethyl ether7759 Ethyl ether7568 THF(highly saturating solvent) 80 일반적으로 sodium 이 lithium 보다 더 ionic Li + 이 Na + 보다 active center 에 더욱 tight 하게 결합되어 있음. Solvating solvent 는 Li + 의 경우는 변화 시키고 부분적으로 ionic 한 Na + 은 많이 변화 시키지 못한다. Lenz P.437 Table 13-9 Anionic Polymerization

24 Spring 2004 Anionic Polymerization St-MMA System 1) Li Metal Initiator 를 쓸 경우 고분자 생성물에 Styrene 이 많이 포함. 2) BuLi 개시제를 쓰면 Styrene 이 거의 없음. Old Explanation 1)Radical anion mechanism 으로 설명 2)Li metal 을 사용하면 MMA 와 Styrene 이 중합 3)MMA 는 anion 으로 형성 4)Styrene 은 radical 이 형성되어 New Explanation Overberger, 1966 NMR 을 사용, styrene block 을 발견 Radical 은 발견못함 처음에 styrene block 이 형성, MMA 블록은 나중에 중합초기에 Li  counterion 이 Li metal 에 용해, 중합이 homogeneous 하게 진행된다. MMM SS MSMMS MS MMM SS M

25 Spring 2004 Anionic Polymerization Li 즉 styrene 이 Li particle 과 associated 됨. St 이 MMA 를 Li 에 못가게끔 blocked out 시킴.  Sty 이 표면에 강하게 흡착된 후 고분자가 선택적으로 형성 성장사슬이 점차 medium 인 (solution) 에 용해되어 결국 Li particle 을 뚫고 나와서 solution 으로 나옴. Li soluble

26 Spring 2004 Cationic Polymerization proton donor electron acceptor  δ-  Positively charged active center 에서 중합반응이 일어남 alkene 류의 모노머에서 중합이 일어나는 경우 electron donating 치환기를 갖는다. 예 ) isobutylene ethylvinyl ether 1. protonic acids : HCl, H 2 SO 4, HClO 4, Cl 3 CCOOH 2. Lewis acids : BF 3, AlCl 3, TiCl 4, SnBr 4, SbCl 3, BiCl 3 Initiators– 주로 Acids 이 경우를 cationogen 이라 함 Electron donating group * Lewis acid 는 개시제로 효과적으로 사용되기 위해 coinitiator( 공촉매 ) 를 사용한다. chloroethane

27 Spring 2004 Cationic Polymerization Typical Initiator Systems Co-initiator Initiator SnCl 4 H 2 O AlCl 3 HCl H 2 SO 4 H 2 SO 4 Order of reactivity AlCl 3 > AlRCl 2 > AlR 2 Cl >AlR 3  물이 있고 공기중에서 spill 하면 불남 HCl > CH 3 COOH > C 6 H 5 NO 2 > > H 2 O >> CH 3 OH > CH 3 COCH 3 Ex) More acidic initiators are most effective in initiating polymerization

28 Spring 2004 Termination Kinetics Cationic Polymerization Second order 이므로 반응이 매우 빠름 문제 : 정지반응이 random 하게 일어난다. * 가 recipe 임, 반응을 조절할 수 있음

29 Spring 2004 Cationic Polymerization 만약

30 Spring 2004 Cationic Polymerization 1) Ring opening polymerization (1) Mechanism carbon type polymzn. 이러한 ROP 를 할 수 있는 monomer 들로는 cyclic amides, sulfides, acetals, esters, lactam, alkanes, … (2) 중합가능성 Polymerizability 는 안정하지 않은 ring 또는 쉽게 cyclize 하지 않는 ring 이 잘 됨. 3,4 and 7-11 membered ring 이 가장 reactive 하다. 5,6 membered rings are stable and slow 중합. 그러나 중합은 가능함. 3-membered ring most easily polymerize

31 Spring 2004 Cationic Polymerization (3) THF(Polytetrahydrofuran) 의 중합예 cocatalyst 로 H 2 O 가 존재하면 중합속도를 증가시킴. living polymrization 이 가능하나 termination 이나 transfer 도 일어남. O(CH 2 ) 4 O + - A + O (CH 2 ) 4 (CH 2 ) 4

32 Spring 2004 Cationic Polymerization (4)Kinetics Initiation 예 ) styrene, stannic-chloride-H 2 O System [SnCl 4 OH - ]H + Propagation – can have a low activation energy and be rapid or Simple propagation reaction Overall rate of polymerization may actually increase w/ decreasing temperature, means that termination has a high activation energy.