Intro to Quantitative Genetics HGEN502, 2011 Hermine H. Maes.

Slides:



Advertisements
Similar presentations
15 The Genetic Basis of Complex Inheritance
Advertisements

Qualitative and Quantitative traits
1 Statistical Considerations for Population-Based Studies in Cancer I Special Topic: Statistical analyses of twin and family data Kim-Anh Do, Ph.D. Associate.
Practical H:\ferreira\biometric\sgene.exe. Practical Aim Visualize graphically how allele frequencies, genetic effects, dominance, etc, influence trait.
Patterns of Inheritance: Mendelian Genetics Chapter 11 Biology 1010.
Genetics SC Biology Standard B The students will be able to predict inherited traits by using the principles of Mendelian Genetics, summarize.
Outline: 1) Basics 2) Means and Values (Ch 7): summary 3) Variance (Ch 8): summary 4) Resemblance between relatives 5) Homework (8.3)
1 15 The Genetic Basis of Complex Inheritance. 2 Multifactorial Traits Multifactorial traits are determined by multiple genetic and environmental factors.
The Inheritance of Complex Traits
Biometrical Genetics QIMR workshop 2013 Slides from Lindon Eaves.
Biometrical genetics Manuel Ferreira Shaun Purcell Pak Sham Boulder Introductory Course 2006.
Biometrical genetics Manuel Ferreira Shaun Purcell Pak Sham Boulder Introductory Course 2006.
1. Mendelian Genetics Adapted from Rashidah Iberahim’s Siti Sarah Jumali Level 3 Room 14 Ext 2123.
Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
The Causes of Variation Twin Methodology Workshop Boulder, March 2010.
Biometrical genetics Pak C Sham The University of Hong Kong Manuel AR Ferreira Queensland Institute for Medical Research 23 rd International Workshop on.
Reminder - Means, Variances and Covariances. Covariance Algebra.
Biometrical Genetics Pak Sham & Shaun Purcell Twin Workshop, March 2002.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Observing Patterns in Inherited Traits
Mendel and the Idea of the Gene
PBG 650 Advanced Plant Breeding
Path Analysis HGEN619 class Method of Path Analysis allows us to represent linear models for the relationship between variables in diagrammatic.
Mendel and the Gene Idea. What genetic principles account for the passing of traits from parents to offspring?  The “blending” hypothesis is the idea.
ConceptS and Connections
Broad-Sense Heritability Index
Chapter 14 Mendel and The Idea of Genes Dr. Joseph Silver.
Institute of Psychiatry King’s College London, UK
Patterns of Inheritance By Clark and Garret. Heredity Definition- The transmission of traits from one generation to the next.
Heredity Unit – Theory of inheritance B-4.7: Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel’s principles of genetics.
Genetic Theory Manuel AR Ferreira Boulder, 2007 Massachusetts General Hospital Harvard Medical School Boston.
Mendel’s Theory.  Mendel correctly concluded from his experiments that each pea plant has two separate “heritable factor” for each trait – one from each.
PBG 650 Advanced Plant Breeding
Copyright © 2013 Pearson Education, Inc. All rights reserved. Chapter 4 Genetics: From Genotype to Phenotype.
The Causes of Variation 2014 International Workshop on Statistical Genetic Methods for Human Complex Traits Boulder, CO. Lindon Eaves, VIPBG, Richmond.
Values & means (Falconer & Mackay: chapter 7) Sanja Franic VU University Amsterdam 2011.
The Causes of Variation Lindon Eaves, VIPBG, Richmond Boulder,CO March 2012.
PATTERNS OF INHERITANCE CAPTER 10. Pre-Mendel’s Theories  Blending Hypothesis: when parents with different traits have offspring, this will always show.
Genetic Theory Pak Sham SGDP, IoP, London, UK. Theory Model Data Inference Experiment Formulation Interpretation.
Chapter 14: Mendel & The Gene Idea Quantitative approach to science Pea plants Austrian Monk.
 Genetics – the scientific study of heredity  Why the garden pea?  Easy to grow  Produce large numbers  Mature quickly  Reproductive organs in same.
Chapter 14 Mendel and the Gene Idea. The “ blending ” hypothesis is the idea that genetic material from the two parents blends together (like blue and.
BIO.B.2- GENETICS CHAPTER 11. B2: Genetics 1. Describe and/ or predict observed patterns of inheritance i.e. dominant, recessive, co-dominant, incomplete.
Biometrical Genetics Lindon Eaves, VIPBG Richmond Boulder CO, 2012.
Introduction to Genetic Theory
Genetic principles for linkage and association analyses Manuel Ferreira & Pak Sham Boulder, 2009.
Biometrical Genetics Shaun Purcell Twin Workshop, March 2004.
Genetics Review 23 How many pairs of chromosomes do humans have?
A. Heredity: The passing of traits (characters) from parents to offspring B. Genetics: The branch of biology that studies heredity. 1. Gregor Mendel:
Genetics And Heredity Introduction. Gregor Mendel Made many observations that led to the model of inheritance that we use today.
LECTURE 6 : GENETICS Introduction to Genetics and heredity
Biometrical genetics Manuel AR Ferreira Boulder, 2008 Massachusetts General Hospital Harvard Medical School Boston.
Active Lecture PowerPoint ® Presentation for Essentials of Genetics Seventh Edition Klug, Cummings, Spencer, Palladino Copyright © 2010 Pearson Education,
AP BIO Please pick up the following papers on the counter by the door as you come into the room: Genetics – Chapter 11 Reading Guide Blood Type Worksheet.
Genetic Theory Manuel AR Ferreira Boulder, 2007 Massachusetts General Hospital Harvard Medical School Boston.
Chapter 14 Mendel and the Gene Idea.
Genetics Unit 3.
MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience
Path Analysis Danielle Dick Boulder 2008
Mendel and the Gene Idea
Bio.B.2- Genetics CHAPTER 11.
Mendel and the Gene Idea
Biometrical model and introduction to genetic analysis
Pak Sham & Shaun Purcell Twin Workshop, March 2002
MENDEL AND THE GENE IDEA OUTLINE
Chapter 7 Multifactorial Traits
Unit 5: Heredity Review Lessons 1, 3, 4 & 5.
Mendel and the Idea of the Gene
Presentation transcript:

Intro to Quantitative Genetics HGEN502, 2011 Hermine H. Maes

Intro to Quantitative Genetics 1/18: Course introduction; Introduction to Quantitative Genetics & Genetic Model Building 1/20: Study Design and Genetic Model Fitting 1/25: Basic Twin Methodology 1/27: Advanced Twin Methodology and Scope of Genetic Epidemiology 2/1: Quantitative Genetics Problem Session

Aims of this talk Historical Background Genetical Principles  Genetic Parameters: additive, dominance  Biometrical Model Statistical Principles  Basic concepts: mean, variance, covariance  Path Analysis  Likelihood

Quantitative Genetics Principles Analysis of patterns and mechanisms underlying variation in continuous traits to resolve and identify their genetic and environmental causes  Continuous traits have continuous phenotypic range; often polygenic & influenced by environmental effects  Ordinal traits are expressed in whole numbers; can be treated as approx discontinuous or as threshold traits  Some qualitative traits; can be treated as having underlying quantitative basis, expressed as a threshold trait (or multiple thresholds)

Types of Genetic Influence Mendelian Disorders  Single gene, highly penetrant, severe, small % affected (e.g., Huntington’s Disease) Chromosomal Disorders  Insertions, deletions of chromosomal sections, severe, small % affected (e.g., Down’s Syndrome) Complex Traits  Multiple genes (of small effect), environment, large % population, susceptibility – not destiny (e.g., depression, alcohol dependence, etc)

Genetic Disorders

Great 19th Century Biologists Gregor Mendel ( ): Mathematical rules of particulate inheritance (“Mendel’s Laws”) Charles Darwin ( ): Evolution depends on differential reproduction of inherited variants Francis Galton ( ): Systematic measurement of family resemblance Karl Pearson ( ): “Pearson Correlation”; graduate student of Galton

Family Measurements

Standardize Measurement Pearson and Lee’s diagram for measurement of “span” (finger-tip to finger-tip distance)

From Pearson and Lee (1903) p.378 Parent Offspring Correlations

From Pearson and Lee (1903) p.387 Sibling Correlations

© Lindon Eaves, 2009 Nuclear Family Correlations

Quantitative Genetic Strategies Family Studies  Does the trait aggregate in families?  The (Really!) Big Problem: Families are a mixture of genetic and environmental factors Twin Studies  Galton’s solution: Twins  One (Ideal) solution: Twins separated at birth  But unfortunately MZA’s are rare  Easier solution: MZ & DZ twins reared together

Twin Studies Reared Apart Minnesota Study of Twins Reared Apart (T. Bouchard et al, 1979  >100 sets of reared-apart twins from across the US & UK  All pairs spent formative years apart (but vary tremendously in amount of contact prior to study)  56 MZAs participated

Types of Twins Monozygotic (MZ; “identical”): result from fertilization of a single egg by a single sperm; share 100% of genetic material Dizygotic (DZ, “fraternal” or “non- identical”): result from independent fertilization of two eggs by two sperm; share on average 50% of their genes

Logic of Classical Twin Study MZs share 100% genes, DZs (on avg) 50% Both twin types share 100% environment If rMZ > rDZ, then genetic factors are important If rDZ > ½ rMZ, then growing up in the same home is important If rMZ < 1, then non-shared environmental factors are important

Causes of Twinning For MZs, appears to be random For DZs,  Increases with mother’s age (follicle stimulating hormone, FSH, levels increase with age)  Hereditary factors (FSH)  Fertility treatment  Rates of twins/multiple births are increasing, currently ~3% of all births

Zygosity of Twins

Chorionicity of Twins 100% of DZ twins are dichorionic ~1/3 of MZ twins are dichorionic and ~2/3 are monochorionic

Virginia Twin Study of Adolescent Behavioral Development Twin Correlations MZ Stature DZ Stature © Lindon Eaves, 2009

Ronald Fisher ( ) 1918: On the Correlation Between Relatives on the Supposition of Mendelian Inheritance 1921: Introduced concept of “likelihood” 1930: The Genetical Theory of Natural Selection 1935: The Design of Experiments Fisher developed mathematical theory that reconciled Mendel’s work with Galton and Pearson’s correlations

Fisher (1918): Basic Ideas Continuous variation caused by lots of genes (polygenic inheritance) Each gene followed Mendel’s laws Environment smoothed out genetic differences Genes may show different degrees of dominance Genes may have many forms (multiple alleles) Mating may not be random (assortative mating) Showed that correlations obtained by Pearson & Lee were explained well by polygenic inheritance [“Mendelian” Crosses with Quantitative Traits]

Biometrical Genetics Lots of credit to: Manuel Ferreira, Shaun Purcell Pak Sham, Lindon Eaves

Revisit common genetic parameters - such as allele frequencies, genetic effects, dominance, variance components, etc Use these parameters to construct a biometrical genetic model Model that expresses the: (1)Mean (2)Variance (3)Covariance between individuals for a quantitative phenotype as a function of genetic parameters. Building a Genetic Model

Population level Transmission level Phenotype level G G G G G G G G G G G G G G G G G G G G G G GG PP Allele and genotype frequencies Mendelian segregation Genetic relatedness Biometrical model Additive and dominance components Genetic Concepts

Population level 1. Allele frequencies A single locus, with two alleles - Biallelic / diallelic - Single nucleotide polymorphism, SNP Alleles A and a - Frequency of A is p - Frequency of a is q = 1 – p A a A a Every individual inherits two alleles - A genotype is the combination of the two alleles - e.g. AA, aa (the homozygotes) or Aa (the heterozygote)

2. Genotype frequencies (Random mating) A (p)a (q) A (p) a (q) Allele 1 Allele 2 AA (p 2 ) aA (qp) Aa (pq) aa (q 2 ) Hardy-Weinberg Equilibrium frequencies P (AA) = p 2 P (Aa) = 2pq P (aa) = q 2 p 2 + 2pq + q 2 = 1 Population level

Transmission level Pure Lines AAaa F1 Aa AAAa aa 3:1 Segregation Ratio Intercross Mendel’s experiments

Aa aa Aaaa F1Pure line Back cross 1:1 Segregation ratio Transmission level

Pure Lines AAaa F1 Aa AAAa aa 3:1 Segregation Ratio Intercross

Aa aa Aaaa F1Pure line Back cross 1:1 Segregation ratio Transmission level

Segregation, Meiosis Mendel’s law of segregation A3 (½)A3 (½)A4 (½)A4 (½) A1 (½)A1 (½) A2 (½)A2 (½) Mother (A 3 A 4 ) A1A3 (¼)A1A3 (¼) A2A3 (¼)A2A3 (¼) A1A4 (¼)A1A4 (¼) A2A4 (¼)A2A4 (¼) Gametes Father (A 1 A 2 ) Transmission level

1. Classical Mendelian traits Dominant trait (D - presence, R - absence) - AA, Aa D - aa R Recessive trait (D - absence, R - presence) - AA, Aa D - aa R Codominant trait (X, Y, Z) - AA X - Aa Y - aa Z Phenotype level

2. Dominant Mendelian inheritance D (½)D (½)d (½)d (½) D (½) d (½) Mother (Dd) DD (¼)DD (¼) dD (¼)dD (¼) Dd (¼)Dd (¼) dd (¼)dd (¼) Father (Dd) Phenotype level

3. Dominant Mendelian inheritance with incomplete penetrance and phenocopies D (½)D (½)d (½)d (½) D (½) d (½) Mother (Dd) DD (¼)DD (¼) dD (¼)dD (¼) Dd (¼)Dd (¼) dd (¼)dd (¼) Father (Dd) Phenocopies Incomplete penetrance Phenotype level

4. Recessive Mendelian inheritance D (½)D (½)d (½)d (½) D (½) d (½) Mother (Dd) DD (¼)DD (¼) dD (¼)dD (¼) Dd (¼)Dd (¼) dd (¼)dd (¼) Father (Dd) Phenotype level

Two kinds of differences  Continuous  Graded, no distinct boundaries  e.g. height, weight, blood-pressure, IQ, extraversion  Categorical  Yes/No  Normal/Affected (Dichotomous)  None/Mild/Severe (Multicategory)  Often called “threshold traits” because people “affected” if they fall above some level of a measured or hypothesized continuous trait Phenotype level

Polygenic Traits 1 Gene  3 Genotypes  3 Phenotypes 2 Genes  9 Genotypes  5 Phenotypes 3 Genes  27 Genotypes  7 Phenotypes 4 Genes  81 Genotypes  9 Phenotypes Mendel’s Experiments in Plant Hybridization, showed how discrete particles (particulate theory of inheritance) behaved mathematically: all or nothing states (round/wrinkled, green/yellow), “Mendelian” disease How do these particles produce a continuous trait like stature or liability to a complex disorder? Phenotype level

Quantitative traits AA Aa aa Phenotype level

m d+a P(X)P(X) X AA Aa aa -a AA Aaaa Genotypic means Biometric Model Genotypic effect Phenotype level m -am +dm +a

Very Basic Statistical Concepts 1. Mean (X) 2. Variance (X) 3. Covariance (X,Y) 4. Correlation (X,Y)

Mean, variance, covariance 1. Mean (X)

Mean, variance, covariance 2. Variance (X)

Mean, variance, covariance 3. Covariance (X,Y)

Mean, variance, covariance (& correlation) 4. Correlation (X,Y)

Biometrical model for single biallelic QTL Biallelic locus - Genotypes: AA, Aa, aa - Genotype frequencies: p 2, 2pq, q 2 Alleles at this locus are transmitted from P-O according to Mendel’s law of segregation Genotypes for this locus influence the expression of a quantitative trait X (i.e. locus is a QTL) Biometrical genetic model that estimates the contribution of this QTL towards the (1) Mean, (2) Variance and (3) Covariance between individuals for this quantitative trait X

Biometrical model for single biallelic QTL Biallelic locus - Genotypes: AA, Aa, aa - Genotype frequencies: p 2, 2pq, q 2 Alleles at this locus are transmitted from P-O according to Mendel’s law of segregation Genotypes for this locus influence the expression of a quantitative trait X (i.e. locus is a QTL) Biometrical genetic model that estimates the contribution of this QTL towards the (1) Mean, (2) Variance and (3) Covariance between individuals for this quantitative trait X

1. Contribution of the QTL to the Mean (X) aa Aa AA Genotypes Frequencies, f(x) Effect, x p2p2 2pqq2q2 a d-a = a(p 2 ) + d(2pq) – a(q 2 )Mean (X)= a(p-q) + 2pqd Biometrical model for single biallelic QTL

2. Contribution of the QTL to the Variance (X) aa Aa AA Genotypes Frequencies, f(x) Effect, x p2p2 2pqq2q2 a d-a = (a-m) 2 p 2 + (d-m) 2 2pq + (-a-m) 2 q 2 Var (X) = V QTL Broad-sense heritability of X at this locus = V QTL / V Total Broad-sense total heritability of X = ΣV QTL / V Total Biometrical model for single biallelic QTL

= (a-m) 2 p 2 + (d-m) 2 2pq + (-a-m) 2 q 2 Var (X) = 2pq[a+(q-p)d] 2 + (2pqd) 2 = V A QTL + V D QTL m d+a–a AA aa Aa Additive effects: the main effects of individual alleles Dominance effects: represent the interaction between alleles d = 0 Biometrical model for single biallelic QTL

= (a-m) 2 p 2 + (d-m) 2 2pq + (-a-m) 2 q 2 Var (X) = 2pq[a+(q-p)d] 2 + (2pqd) 2 = V A QTL + V D QTL AA aaAa Additive effects: the main effects of individual alleles Dominance effects: represent the interaction between alleles m –a+ad d > 0 Biometrical model for single biallelic QTL

= (a-m) 2 p 2 + (d-m) 2 2pq + (-a-m) 2 q 2 Var (X) = 2pq[a+(q-p)d] 2 + (2pqd) 2 = V A QTL + V D QTL AA aaAa Additive effects: the main effects of individual alleles Dominance effects: represent the interaction between alleles m –a+ad d < 0 Biometrical model for single biallelic QTL

aa Aa AA Var (X) = Regression Variance + Residual Variance = Additive Variance + Dominance Variance m –a +a d Biometrical model for single biallelic QTL

Var (X) = 2pq[a+(q-p)d] 2 + (2pqd) 2 V A QTL + V D QTL Demonstrate 2A. Average allelic effect 2B. Additive genetic variance NOTE: Additive genetic variance depends on allele frequency p & additive genetic value a as well as dominance deviation d Additive genetic variance typically greater than dominance variance Biometrical model for single biallelic QTL

2A. Average allelic effect (α) The deviation of the allelic mean from the population mean a(p-q) + 2pqd A a αaαa αAαA ? ? Mean (X) Allele a Allele APopulation AAAaaa ad-a Apq ap+dq q(a+d(q-p)) apq dp-aq -p(a+d(q-p)) Allelic meanAverage allelic effect (α) 1/3 Biometrical model for single biallelic QTL

Denote the average allelic effects - α A = q(a+d(q-p)) - α a = -p(a+d(q-p)) If only two alleles exist, we can define the average effect of allele substitution - α = α A - α a - α = (q-(-p))(a+d(q-p)) = (a+d(q-p)) Therefore: - α A = qα - α a = -pα 2/3 Biometrical model for single biallelic QTL

2B. Additive genetic variance The variance of the average allelic effects 2αA2αA Additive effect 2A. Average allelic effect (α) Freq. AA Aa aa p2p2 2pq q2q2 α A + α a 2αa2αa = 2qα= 2qα = (q-p)α = -2pα V A QTL = (2qα) 2 p 2 + ((q-p)α) 2 2pq + (-2pα) 2 q 2 = 2pqα 2 = 2pq[a+d(q-p)] 2 d = 0, V A QTL = 2pqa 2 p = q, V A QTL = ½a 2 3/3 α A = qα α a = -pα Biometrical model for single biallelic QTL

2B. Additive genetic variance 2A. Average allelic effect (α) 3. Contribution of the QTL to the Covariance (X,Y) 2. Contribution of the QTL to the Variance (X) 1. Contribution of the QTL to the Mean (X) Biometrical model for single biallelic QTL

AA Aa aa AA Aaaa (a-m)(a-m) (d-m)(d-m) (-a-m) (a-m)(a-m) (d-m)(d-m) (a-m)2(a-m)2 (a-m)(a-m) (d-m)(d-m) (a-m)(a-m) (d-m)2(d-m)2 (d-m)(d-m) (-a-m) 2 3. Contribution of the QTL to the Cov (X,Y) Biometrical model for single biallelic QTL

AA Aa aa AA Aaaa (a-m)(a-m) (d-m)(d-m) (-a-m) (a-m)(a-m) (d-m)(d-m) (a-m)2(a-m)2 (a-m)(a-m) (d-m)(d-m) (a-m)(a-m) (d-m)2(d-m)2 (d-m)(d-m) (-a-m) 2 p2p pq 0 q2q2 3A. Contribution of the QTL to the Cov (X,Y) – MZ twins = (a-m) 2 p 2 + (d-m) 2 2pq + (-a-m) 2 q 2 Covar (X i,X j ) = V A QTL + V D QTL = 2pq[a+(q-p)d] 2 + (2pqd) 2 Biometrical model for single biallelic QTL

AA Aa aa AA Aaaa (a-m)(a-m) (d-m)(d-m) (-a-m) (a-m)(a-m) (d-m)(d-m) (a-m)2(a-m)2 (a-m)(a-m) (d-m)(d-m) (a-m)(a-m) (d-m)2(d-m)2 (d-m)(d-m) (-a-m) 2 p3p3 p2qp2q 0 pq pq 2 q3q3 3B. Contribution of the QTL to the Cov (X,Y) – Parent-Offspring Biometrical model for single biallelic QTL

e.g. given an AA father, an AA offspring can come from either AA x AA or AA x Aa parental mating types AA x AA will occur p 2 × p 2 = p 4 and have AA offspring Prob()=1 AA x Aa will occur p 2 × 2pq = 2p 3 q and have AA offspring Prob()=0.5 and have Aa offspring Prob()=0.5 therefore, P(AA father & AA offspring) = p 4 + p 3 q = p 3 (p+q) = p 3 Biometrical model for single biallelic QTL

AA Aa aa AA Aaaa (a-m)(a-m) (d-m)(d-m) (-a-m) (a-m)(a-m) (d-m)(d-m) (a-m)2(a-m)2 (a-m)(a-m) (d-m)(d-m) (a-m)(a-m) (d-m)2(d-m)2 (d-m)(d-m) (-a-m) 2 p3p3 p2qp2q 0 pq pq 2 q3q3 = (a-m) 2 p 3 + … + (-a-m) 2 q 3 Cov (X i,X j ) = ½V A QTL = pq[a+(q-p)d] 2 3B. Contribution of the QTL to the Cov (X,Y) – Parent-Offspring Biometrical model for single biallelic QTL

AA Aa aa AA Aaaa (a-m)(a-m) (d-m)(d-m) (-a-m) (a-m)(a-m) (d-m)(d-m) (a-m)2(a-m)2 (a-m)(a-m) (d-m)(d-m) (a-m)(a-m) (d-m)2(d-m)2 (d-m)(d-m) (-a-m) 2 p4p4 2p 3 q p2q2p2q2 4p 2 q 2 2pq 3 q4q4 = (a-m) 2 p 4 + … + (-a-m) 2 q 4 Cov (X i,X j ) = 0 3C. Contribution of the QTL to the Cov (X,Y) – Unrelated individuals Biometrical model for single biallelic QTL

Cov (X i,X j ) 3D. Contribution of the QTL to the Cov (X,Y) – DZ twins and full sibs ¼ genome ¼ (2 alleles) + ½ (1 allele) + ¼ (0 alleles) MZ twins P-O Unrelateds ¼ genome # identical alleles inherited from parents 0 1 (mother) 1 (father) 2 = ¼ Cov(MZ) + ½ Cov(P-O) + ¼ Cov(Unrel) = ¼(V A QTL +V D QTL ) + ½ (½ V A QTL ) + ¼ (0) = ½ V A QTL + ¼V D QTL Biometrical model for single biallelic QTL

Biometrical model predicts contribution of a QTL to the mean, variance and covariances of a trait Var (X) = V A QTL + V D QTL 1 QTL Cov (MZ) = V A QTL + V D QTL Cov (DZ) = ½V A QTL + ¼V D QTL Var (X) = Σ(V A QTL ) + Σ(V D QTL ) = V A + V D Multiple QTL Cov (MZ) Cov (DZ) = Σ(V A QTL ) + Σ(V D QTL ) = V A + V D = Σ(½V A QTL ) + Σ(¼V D QTL ) = ½V A + ¼V D Summary

Biometrical model underlies the variance components estimation performed in Mx Var (X) = V A + V D + V E Cov (MZ) Cov (DZ) = V A + V D = ½V A + ¼V D Summary

Path Analysis HGEN502, 2011 Hermine H. Maes

Model Building Write equations for means, variances and covariances of different type of relative or Draw path diagrams for easy derivation of expected means, variances and covariances and translation to mathematical formulation

Method of Path Analysis Allows us to represent linear models for the relationship between variables in diagrammatic form, e.g. a genetic model; a factor model; a regression model Makes it easy to derive expectations for the variances and covariances of variables in terms of the parameters of the proposed linear model Permits easy translation into matrix formulation as used by statistical programs

Path Diagram Variables Squares or rectangles denote observed variables Circles or ellipses denote latent (unmeasured) variables Upper-case letters are used to denote variables Lower-case letters (or numeric values) are used to denote covariances or path coefficients

Variables latent variables observed variables

Path Diagram Arrows Single-headed arrows or paths (–>) are used to represent causal relationships between variables under a particular model - where the variable at the tail is hypothesized to have a direct influence on the variable at the head Double-headed arrows ( ) represent a covariance between two variables, which may arise through common causes not represented in the model. They may also be used to represent the variance of a variable

Arrows double-headed arrows single-headed arrows

Path Analysis Tracing Rules Trace backwards, change direction at a 2- headed arrow, then trace forwards (implies that we can never trace through two-headed arrows in the same chain). The expected covariance between two variables, or the expected variance of a variable, is computed by multiplying together all the coefficients in a chain, and then summing over all possible chains.

Non-genetic Example

Cov AB Cov AB = kl + mqn + mpl

Expectations Cov AB = Cov BC = Cov AC = Var A = Var B = Var C =

Expectations Cov AB = kl + mqn + mpl Cov BC = no Cov AC = mqo Var A = k 2 + m kpm Var B = l 2 + n 2 Var C = o 2

Genetic Examples MZ Twins Reared Together DZ Twins Reared Together MZ Twins Reared Apart DZ Twins Reared Apart Parents & Offspring

MZ Twins Reared Together

Expected Covariance Twin 1Twin 2 Twin 1a 2+ c 2+ e 2 variance a 2+ c 2 Twin 2a 2+ c 2 covariance a 2+ c 2+ e 2 MZ Twins RT

DZ Twins Reared Together

Expected Covariance Twin 1 Twin 2 Twin 1a 2+ c 2+ e 2.5a 2+ c 2 Twin 2.5a 2+ c 2 a 2+ c 2+ e 2 DZ Twins RT

MZ Twins Reared Apart

DZ Twins Reared Apart

Twins and Parents

Role of model mediating between theory and data