A Framework for a Scalable Agent Architecture of Cooperationg Heterogeneous Knowledge Sources Aris M. Ouksel 컴퓨터공학과 96419-021 김 주 남.

Slides:



Advertisements
Similar presentations
Università di Modena e Reggio Emilia ;-)WINK Maurizio Vincini UniMORE Researcher Università di Modena e Reggio Emilia WINK System: Intelligent Integration.
Advertisements

Office of SA to CNS GeoIntelligence Introduction Data Mining vs Image Mining Image Mining - Issues and Challenges CBIR Image Mining Process Ontology.
The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE2008) Department of Electrical and Computer Engineering
0 General information Rate of acceptance 37% Papers from 15 Countries and 5 Geographical Areas –North America 5 –South America 2 –Europe 20 –Asia 2 –Australia.
Research topics Semantic Web - Spring 2007 Computer Engineering Department Sharif University of Technology.
CS652 Spring 2004 Summary. Course Objectives  Learn how to extract, structure, and integrate Web information  Learn what the Semantic Web is  Learn.
Semantic Web and Web Mining: Networking with Industry and Academia İsmail Hakkı Toroslu IST EVENT 2006.
MS DB Proposal Scott Canaan B. Thomas Golisano College of Computing & Information Sciences.
Advanced Topics COMP163: Database Management Systems University of the Pacific December 9, 2008.
24/1/20081 Architecture of multiple databases integration.
P2P Information Interoperability & Decision Support Domain Application SEMANTIC INTEROP QUERY PROCESSING GIS INTEROP P2P ● Heterogeneous semantic ● Semantic.
1 Lecture 13: Database Heterogeneity Debriefing Project Phase 2.
Semantics For the Semantic Web: The Implicit, the Formal and The Powerful Amit Sheth, Cartic Ramakrishnan, Christopher Thomas CS751 Spring 2005 Presenter:
1 Lecture 13: Database Heterogeneity. 2 Outline Database Integration Wrappers Mediators Integration Conflicts.
Distributed Database Management Systems. Reading Textbook: Ch. 4 Textbook: Ch. 4 FarkasCSCE Spring
02 -1 Lecture 02 Agent Technology Topics –Introduction –Agent Reasoning –Agent Learning –Ontology Engineering –User Modeling –Mobile Agents –Multi-Agent.
Data Mining – Intro.
Enhance legal retrieval applications with an automatically induced knowledge base Ka Kan Lo.
Semantic Web and Web Mining: Networking with Industry and Academia İsmail Hakkı Toroslu IST EVENT 2006.
Web-based Portal for Discovery, Retrieval and Visualization of Earth Science Datasets in Grid Environment Zhenping (Jane) Liu.
University of ViennaP. Brezany 1 Knowledge Discovery in Grid Datasets – Goals, Design Concepts and the Architecture Peter Brezany University of Vienna.
1 Where do spatial context-models end and where do ontologies start? A proposal of a combined approach Christian Becker Distributed Systems Daniela Nicklas.
LÊ QU Ố C HUY ID: QLU OUTLINE  What is data mining ?  Major issues in data mining 2.
OntoNav: A Semantic Indoor Navigation System Pervasive Computing Research Group, Communication Networks Laboratory (CNL), Dept. of Informatics & Telecommunications,
Knowledge Mediation in the WWW based on Labelled DAGs with Attached Constraints Jutta Eusterbrock WebTechnology GmbH.
Ontology Matching Basics Ontology Matching by Jerome Euzenat and Pavel Shvaiko Parts I and II 11/6/2012Ontology Matching Basics - PL, CS 6521.
Break Out Session on Infrastructure and Technology: A Report Vipul Kashyap AOS Workshop, Rome, 15 November 2001
The Database and Info. Systems Lab. University of Illinois at Urbana-Champaign Light-weight Domain-based Form Assistant: Querying Web Databases On the.
Peer-to-Peer Data Integration Using Distributed Bridges Neal Arthorne B. Eng. Computer Systems (2002) Supervisor: Babak Esfandiari April 12, 2005 Candidate.
PART IV: REPRESENTING, EXPLAINING, AND PROCESSING ALIGNMENTS & PART V: CONCLUSIONS Ontology Matching Jerome Euzenat and Pavel Shvaiko.
Entity Framework Overview. Entity Framework A set of technologies in ADO.NET that support the development of data-oriented software applications A component.
백록선.  트위터에 친숙한 36~45 세의 55 명의 응답자 ◦ 응답자 중 83% 는 매일 twit 을 읽음 ◦ 응답자 중 59% 는 매일 twit 을 씀 ◦ 응답자 중 87% 는 매일 twitter post 를 검색.
Odyssey A Reuse Environment based on Domain Models Prepared By: Mahmud Gabareen Eliad Cohen.
Linked-data and the Internet of Things Payam Barnaghi Centre for Communication Systems Research University of Surrey March 2012.
Page 1 Alliver™ Page 2 Scenario Users Contents Properties Contexts Tags Users Context Listener Set of contents Service Reasoner GPS Navigator.
©Ferenc Vajda 1 Semantic Grid Ferenc Vajda Computer and Automation Research Institute Hungarian Academy of Sciences.
A Context Model based on Ontological Languages: a Proposal for Information Visualization School of Informatics Castilla-La Mancha University Ramón Hervás.
Interoperability & Knowledge Sharing Advisor: Dr. Sudha Ram Dr. Jinsoo Park Kangsuk Kim (former MS Student) Yousub Hwang (Ph.D. Student)
1 A Historical Perspective on Conceptual Modelling (Based on an article and presentation by Janis Bubenko jr., Royal Institute of Technology, Sweden. June.
1 Relational Database Implementation of a Multi- dimensional database 컴퓨터언어연구실 석사 3 학기 김혜진 U.S. Patent Number: 5,926,818 Date of Patent: Jul.20,1999 inventor:
Object Oriented Multi-Database Systems An Overview of Chapters 4 and 5.
Ontology Mapping in Pervasive Computing Environment C.Y. Kong, C.L. Wang, F.C.M. Lau The University of Hong Kong.
1 Context-Aware Internet Sharma Chakravarthy UT Arlington December 19, 2008.
1 Resolving Schematic Discrepancy in the Integration of Entity-Relationship Schemas Qi He Tok Wang Ling Dept. of Computer Science School of Computing National.
Issues in Ontology-based Information integration By Zhan Cui, Dean Jones and Paul O’Brien.
Service Brokering Yu-sik Park. Index Introduction Brokering system Ontology Services retrieval using ontology Example.
David Chiu and Gagan Agrawal Department of Computer Science and Engineering The Ohio State University 1 Supporting Workflows through Data-driven Service.
Data Mining with Big Data IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 Xiangyu Cai ( )
A Portrait of the Semantic Web in Action Jeff Heflin and James Hendler IEEE Intelligent Systems December 6, 2010 Hyewon Lim.
The Database and Info. Systems Lab. University of Illinois at Urbana-Champaign Light-weight Domain-based Form Assistant: Querying Web Databases On the.
Semantic Data Extraction for B2B Integration Syntactic-to-Semantic Middleware Bruno Silva 1, Jorge Cardoso 2 1 2
Enable Semantic Interoperability for Decision Support and Risk Management Presented by Dr. David Li Key Contributors: Dr. Ruixin Yang and Dr. John Qu.
Selected Semantic Web UMBC CoBrA – Context Broker Architecture  Using OWL to define ontologies for context modeling and reasoning  Taking.
GAS ontology: an ontology for collaboration among ubiquitous computing devices International Journal of Human-Computer Studies (May 2005) Presented By.
Integrated Departmental Information Service IDIS provides integration in three aspects Integrate relational querying and text retrieval Integrate search.
Semantic Interoperability in GIS N. L. Sarda Suman Somavarapu.
Improvement of Semantic Interoperability based on Metadata Registry(MDR) Doo-Kwon Baik Dept. of CSE Korea University.
Semantic Graph Mining for Biomedical Network Analysis: A Case Study in Traditional Chinese Medicine Tong Yu HCLS
A Context Framework for Ambient Intelligence
Data Mining – Intro.
Department of Geography Jeon-Young Kang · Yi Yang
Lecture #11: Ontology Engineering Dr. Bhavani Thuraisingham
Datamining : Refers to extracting or mining knowledge from large amounts of data Applications : Market Analysis Fraud Detection Customer Retention Production.
Dr. Sudha Ram Huimin Zhao Department of MIS University of Arizona
Ontology-Based Approaches to Data Integration
Social Abstractions for Information agents
DSS Concepts, Methodologies and Technologies
Context-Aware Internet
Presentation transcript:

A Framework for a Scalable Agent Architecture of Cooperationg Heterogeneous Knowledge Sources Aris M. Ouksel 컴퓨터공학과 김 주 남

Index u Introduction and Objectives u A Conceptual framework for SCOPES u Current State of Knowledge in Semantic Interoperablity u Semantic Interoperability in SCOPES u Conclusion and Extensions to SCOPES Currently Being Investigated

Introductions and Objectives(1) u Realistic social interaction 하에서 동작되는 agent 들을 설계하기 위한 아키텍쳐에 필요한 적당한 Conceptual Framework 은 무엇인가 ? u 불완전하고 불확실하고 멀티미디어적인 정보 소스들을 가지고 있는 knowledge site 사이에서 interoperability 를 달성하며, 이질성을 다루고 관리하기 위한 capability 를 제공하면서 어떻게 Agent 들의 자율성을 유지할 것인가 ?

Introductions and Objectives(2) u Agent 들의 기억 특성은 어떠한가 ? 특히 어떻게 agent 가 복잡한 상호작용 속에서 배울 수 있으 며 기억을 증대시킬 수 있을까 ? u Domain specfic knowledge 가 어떻게 상호작용 에 영향을 미치는가 ? 이런 knowledge 를 잡아내 기 위해서 어떠한 개념적인 구성이 필요한가 ? u 이러한 이해가 어떻게 정형화되고 모델화되며 구현될 수 있나 ? 어떠한 특징의 아키텍쳐의 scalability 를 보장해 주나 ?

Introductions and Objectives(3) u SCOPES: Semantic/Semiotic Coordination Over Parallel Exploration Spaces – agent 사이의 computer-mediated conversation 을 강조 – agent 들의 contextual interaction 을 monitoring 하고 이 interaction 들을 통해 knowledge discovery 를 제공

Introductions and Objectives(4) u Challenge in SCOPES – 현재의 SCOPES 가 다루는 범위를 interaction 과 knowledge network 에 관한 보다 의미있는 문제를 연구하기 위한 엄격한 framework 으 로 확장하고 통합함과 동시에 실용적인 시스 템으로 발전할 수 있는 유연성을 보장

A Conceptual Framework for SCOPES(1) u SCOPES 는 현재 context 구성에 있어서 의미있는 interaction 이 일어날 수 있도록 하는 knowledge elicitation 에 대한 메커니 즘을 제공. – 서로 상반되는 internal semantics 를 갖는 정 보 소스들 간의 dynamic integration 에 부적합

A Conceptual Framework for SCOPES(2) u A Semiotics Framework for Constructing Interaction Context – Mutual Beliefs(MB) 를 이용 (constructed) – Agent 들이 context 에 대한 협상 (negotiation) 을 추가로 요구 query-based framework 의 context 에서 생기는 identification of domains 문제에 대한 좋은 해결책

A Conceptual Framework for SCOPES(3) u Open Systems Framework for Social Interaction (semiotics framework)

A Conceptual Framework for SCOPES(4)

A Conceptual Framework for SCOPES(5) u Mechanisms for Context Construction – Designing Rules of Interaction – Reengineering the Pragmatics, Semantics, and Syntactics – Handling Approximation – Coming to Agreements

Current State of Knowledge in Semantic Interoperability(1) u Tranditional Multidatabase Approaches – conceptual schema 를 이용 생성 및 유지가 어려움 semantic heterogeneity 들에 대한 조정을 고려하지 않음 전체적 일관성과 knowledge 에 대한 통약성 (commensurability) 을 가정

Current State of Knowledge in Semantic Interoperability(2) u Tranditional Multidatabase Approaches – multidatabase language multidatabase language 를 이용하여 global schema 를 만들때 생기는 문제를 줄임 user 에게 data integration 에서의 어려움을 넘김.

Current State of Knowledge in Semantic Interoperability(3) u Advanced Multidatabase Approaches – Information Retreival base techniques – Shared Ontology based techniques – Neural Networks based techniques – Mediator based techniques – Software Agents based approaches

Semantic Interoperability in SCOPES(1) u Semantic 조정을 위해서는 다음이 필요 – query-directed dynamic elicitation of semantic knowledge and partial integration – discovery and reconciliation of conflicts in environment of incomplete and uncertain semantic knowledge – coexistence and management of multiple plausible interpretations during reconciliation

Semantic Interoperability in SCOPES(2) u Classification of Semantic Conflicts – Inter-Schema Correspondence Assertion(ISCA) – Assert[naming,abstraction,heterogeneity] naming: 로컬 database 의 요소 x 와 로컬 또는 리모 트 database 의 요소 y 에 대한 naming function – syn(x,y) : synonyms – hom(x,y): homonyms – unrel(x,y): unrelated

Semantic Interoperability in SCOPES(3) – class(x,y): class relationship – gen(x,y): generalization relationship – agg(x,y): aggrgation relationship – att(x,O,DB): attribute level – obj(x,DB): x 는 DB 의 object – inst(x,O,DB) x 는 DB 의 object O 의 instance

Semantic Interoperability in SCOPES(4)

Semantic Interoperability in SCOPES(5) u Context-Driven Reconciliation and Management of Multiple Contexts – Assumption Based Truth Maintenace System(ATMS) 를 사용 – Dempster-Schafer theory of evidence 를 변형하 여 사용

Semantic Interoperability in SCOPES(6) u Inference – SCOPES 에서 reconciliation 테크닉과 knowledge source 들은 다음 법칙을 이용하여 통합되었다. – R: if C(p) then consequent. [p.q] – C 는 BNF 에 의해 다음과 같이 정의된다. – C::= E*Assertion*Assumption | – C*Assertion | C*Assumption | C

Semantic Interoperability in SCOPES(7) – p: degree of belief in all assertions in AC  – q: degree of belief in rule r if p =1

Semantic Interoperability in SCOPES(8) u The Context Negotiation Layer – Information Resource Module(IRM) information source 가 적당한가를 확인함 – Classification Module(CM) semantic conflict 를 분류함 – Inference Engine Module(IEM) 확률적인 semantic relationship 을 추론함 – Context Indexing Module(CIM) 타당한 context 들의 context index 를 유지

Semantic Interoperability in SCOPES(9) u The Context Negotiation Layer – Human Interface Module(HIM) 사람이 semantic reconciliation process 에 끼어들 수 있게 해 줌.

Semantic Interoperability in SCOPES(10)

Semantic Interoperability in SCOPES(11) u Scalability – network-wide global directory 의 사용 제거 – Global schema, multidatabase approaches, advanced data integration approaches 를 사용 못함 – 여러 agent-based information retrieval system 을 제거

Semantic Interoperability in SCOPES(12) u Algorithm: Context Construction – 1. Initialization: 먼저 억세스한 소스들로부터 CIM 에서 의미상으로 타당한 소스들을 찾음. – 2. Mapping query terms: IRM 에서 리모트 소 스들 중 유사성에서 다음으로 가장 높은 non-rejected 소스를 찾음. – 3. Schema propagation: 리모트 소스로의 부가 적인 mapping 들을 생성하기 위해 local schema rule 을 사용.

Semantic Interoperability in SCOPES(13) u Algorithm: Context Construction – 4. ISCAs inference: IEM 에서 새로운 ISCA 를 생성하거나 현재 ISCA 를 완료하기 위해 inference rule 을 사용 – 5. Derivation: 부가적인 evidence 를 위해 현재 ISCA 들을 수집함 – 6. Derivation 이 더 이상 없을때 까지 4 번과 5 번 단계를 수행

Semantic Interoperability in SCOPES(14) u Algorithm: Context Construction – 7. Context merging: 도식적으로 (schematically) 관련된 object 들 사이의 ISCA 들을 통합함 – 8. 모든 query term 들이 수행될 때까지 2 번에 서 7 번 단계를 반복

Conclusion and Extensions to SCOPES Currently Being Investigated u Rich Media Objects, Temporal, Spatial, and Causal Relationships u Use of Domain-Specific Knowledge, Search, and Reasoning Capabilities