Chapter 8 Introduction to Number Theory. Prime Numbers prime numbers only have divisors of 1 and self –they cannot be written as a product of other numbers.

Slides:



Advertisements
Similar presentations
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Advertisements

Cryptography and Network Security Chapter 9
Chapter 3 Public Key Cryptography and RSA Lecture slides by Lawrie Brown Modifications by Nguyen Cao Dat.
Cryptography and Network Security Chapter 8 Fourth Edition by William Stallings.
Opening quote. A number of concepts from number theory are essential in the design of public-key cryptographic algorithms, which this chapter will introduce.
1 Lect. 12: Number Theory. Contents Prime and Relative Prime Numbers Modular Arithmetic Fermat’s and Euler’s Theorem Extended Euclid’s Algorithm.
Computer Science CSC 474Dr. Peng Ning1 CSC 474 Information Systems Security Topic 2.3 Basic Number Theory.
Applied Cryptography (Public key) Part I. Let’s first finish “Symmetric Key” before talking about public key John wrote the letters of the alphabet under.
Cryptography and Network Security
Chapter 8 – Introduction to Number Theory. Prime Numbers prime numbers only have divisors of 1 and self –they cannot be written as a product of other.
Computability and Complexity
Chapter 8 Introduction To Number Theory. Prime Numbers Prime numbers only have divisors of 1 and Prime numbers only have divisors of 1 and self. self.
Primality Testing Patrick Lee 12 July 2003 (updated on 13 July 2003)
Chapter 8 More Number Theory. Prime Numbers Prime numbers only have divisors of 1 and itself They cannot be written as a product of other numbers Prime.
22C:19 Discrete Math Integers and Modular Arithmetic Fall 2010 Sukumar Ghosh.
CNS2010handout 8 :: introduction to number theory1 computer and network security matt barrie.
and Factoring Integers (I)
1 Chapter 7– Introduction to Number Theory Instructor: 孫宏民 Room: EECS 6402, Tel: , Fax :
Chap. 8,9: Introduction to number theory and RSA algorithm
Complexity1 Pratt’s Theorem Proved. Complexity2 Introduction So far, we’ve reduced proving PRIMES  NP to proving a number theory claim. This is our next.
and Factoring Integers
Announcements: HW3 updated. Due next Thursday HW3 updated. Due next Thursday Written quiz tomorrow on chapters 1-2 (next slide) Written quiz tomorrow on.
Chapter 4 – Finite Fields Introduction  will now introduce finite fields  of increasing importance in cryptography AES, Elliptic Curve, IDEA, Public.
Cryptography & Number Theory
Chapter 8 – Introduction to Number Theory Prime Numbers  prime numbers only have divisors of 1 and self they cannot be written as a product of other numbers.
Chapter 8 – Introduction to Number Theory Prime Numbers
DTTF/NB479: Dszquphsbqiz Day 9 Announcements: Homework 2 due now Homework 2 due now Computer quiz Thursday on chapter 2 Computer quiz Thursday on chapter.
Cryptography and Network Security Chapter 8. Chapter 8 – Introduction to Number Theory The Devil said to Daniel Webster: "Set me a task I can't carry.
Chapter 8 – Introduction to Number Theory Prime Numbers  prime numbers only have divisors of 1 and self they cannot be written as a product of other numbers.
The RSA Algorithm JooSeok Song Tue.
Prime Numbers Prime numbers only have divisors of 1 and self
Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations Copyright © The McGraw-Hill Companies, Inc. Permission required.
Cryptography A little number theory Public/private key cryptography –Based on slides of William Stallings and Lawrie Brown.

Module :MA3036NI Cryptography and Number Theory Lecture Week 7
1 Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown Chapter 4 – Finite Fields.
Information Security and Management 4. Finite Fields 8
The RSA Algorithm. Content Review of Encryption RSA An RSA example.
YSLInformation Security -- Public-Key Cryptography1 Prime and Relatively Prime Numbers Divisors: We say that b  0 divides a if a = mb for some m, where.
Fall 2002CS 395: Computer Security1 Chapters 4 and 8: The Mathematics Required for Public Key Cryptography In case you’re beginning to worry that this.
CS/ECE Advanced Network Security Dr. Attila Altay Yavuz
9/22/15UB Fall 2015 CSE565: S. Upadhyaya Lec 7.1 CSE565: Computer Security Lecture 7 Number Theory Concepts Shambhu Upadhyaya Computer Science & Eng. University.
Cryptography and Network Security Chapter 4. Introduction  will now introduce finite fields  of increasing importance in cryptography AES, Elliptic.
Key Management Network Systems Security Mort Anvari.
Introduction to Number Theory
Pertemuan #5 Pengantar ke Number Theory Kuliah Pengaman Jaringan.
Introduction to Number Theory Department of Computer Engineering Sharif University of Technology 3/8/2006.
9.1 Primes and Related Congruence Equations 23 Sep 2013.
Lecture 2-3 Basic Number Theory and Algebra. In modern cryptographic systems, the messages are represented by numerical values prior to being encrypted.
CS480 Cryptography and Information Security
Lecture 5 Asymmetric Cryptography. Private-Key Cryptography Traditional private/secret/single key cryptography uses one key Shared by both sender and.
Introduction to Number Theory
Mathematics of Cryptography
Visit for more Learning Resources
CSE565: Computer Security Lecture 7 Number Theory Concepts
Lecture 5 RSA DR. Nermin Hamza.
Cryptography and Network Security
Introduction to Number Theory
Cryptography and Network Security Chapter 8
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security
Private-Key Cryptography
Prime and Relatively Prime Numbers
ICS 353: Design and Analysis of Algorithms
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security
刘振 上海交通大学 计算机科学与工程系 电信群楼3-509
Introduction to Cryptography
Mathematical Background for Cryptography
Lecture 2-3 Basic Number Theory and Algebra
Presentation transcript:

Chapter 8 Introduction to Number Theory

Prime Numbers prime numbers only have divisors of 1 and self –they cannot be written as a product of other numbers –note: 1 is prime, but is generally not of interest eg. 2,3,5,7 are prime, 4,6,8,9,10 are not prime numbers are central to number theory list of prime number less than 200 is:

Prime Factorisation to factor a number n is to write it as a product of other numbers: n=a × b × c note that factoring a number is relatively hard compared to multiplying the factors together to generate the number the prime factorisation of a number n is when its written as a product of primes –eg. 91=7×13 ; 3600=2 4 ×3 2 ×5 2

Relatively Prime Numbers & GCD two numbers a, b are relatively prime if have no common divisors apart from 1 –eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers –eg. 300=2 1 ×3 1 ×5 2 18=2 1 ×3 2 hence GCD(18,300)=2 1 ×3 1 ×5 0 =6

Fermat's Theorem a p-1 mod p = 1 – where p is prime and gcd(a,p)=1 also known as Fermat’s Little Theorem useful in public key and primality testing

Euler Totient Function ø(n) when doing arithmetic modulo n complete set of residues is: 0..n-1 reduced set of residues is those numbers (residues) which are relatively prime to n –eg for n=10, –complete set of residues is {0,1,2,3,4,5,6,7,8,9} –reduced set of residues is {1,3,7,9} number of elements in reduced set of residues is called the Euler Totient Function ø(n)

Euler Totient Function ø(n) to compute ø(n) need to count number of elements to be excluded in general need prime factorization, but –for p (p prime) ø(p) = p-1 –for p.q (p,q prime) ø(p.q) = (p-1)(q-1) eg. –ø(37) = 36 –ø(21) = (3–1)×(7–1) = 2×6 = 12

Euler's Theorem a generalisation of Fermat's Theorem a ø(n) mod N = 1 –where gcd(a,N)=1 eg. –a=3;n=10; ø(10)=4; –hence 3 4 = 81 = 1 mod 10 –a=2;n=11; ø(11)=10; –hence 2 10 = 1024 = 1 mod 11

Chinese Remainder Theorem used to speed up modulo computations Z m : M = m 1 m 2..m k ; gcd(m i,m j )=1 for 1  i,j  k A  Z m : A  (a 1,a 2,..,a k ); where a i =A mod m i for 1  i  k Bijection: Z m  Z m1  Z m2  … Z mk Chinese Remainder theorem lets us work in each moduli m i separately since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem A, B  Z m : A  (a 1,a 2,..,a k ); B  (b 1,b 2,..,b k ) (A+B) mod M  ((a 1 +b 1 )mod m 1,..,(a k +b k )mod m k ) (A-B) mod M  ((a 1 -b 1 )mod m 1,..,(a k -b k )mod m k ) (A  B) mod M  ((a 1  b 1 )mod m 1,..,(a k  b k )mod m k )

Chinese Remainder Theorem to compute (a 1,a 2,..,a k ) from A is just to take a i =A mod m i to compute A from (a 1,a 2,..,a k ) from A firstly compute all M i =M /m i ; M i  0 mod m j for all j  i

Primitive Roots from Euler’s theorem have a ø(n) mod n=1 consider a m mod n=1, GCD(a,n)=1 –must exist for m= ø(n) but may be smaller –once powers reach m, cycle will repeat if smallest is m= ø(n) then a is called a primitive root of n; a, a 2, …, a ø(n) are distinct (mod n) and are all relatively prime to n. if p is prime and a is a primitive root of p, then successive powers of a "generate" the group mod p Not all integers have primitive roots. 2, 4, p , 2 p  have primitive roots, where p is any odd prime and  is a positive integer.

the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p that is to find x where a x = b mod p written as x=log a b mod p or x=ind a,p (b) if a is a primitive root then always exists, otherwise may not –x = log 3 4 mod 13 (x st 3 x = 4 mod 13) has no answer –x = log 2 3 mod 13 = 4 by trying successive powers whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem The time complexity to find x is Discrete Logarithms or Indices