The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.

Slides:



Advertisements
Similar presentations
THE FINE-TUNING PROBLEM IN SUSY AND LITTLE HIGGS
Advertisements

Kiwoon Choi PQ-invariant multi-singlet NMSSM
What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Split Two-Higgs Doublet and Neutrino Condensation Fei Wang Tsinghua University
Hep-ph/ , with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) New Ideas in Randall-Sundrum Models José Santiago Theory Group (FNAL)
Fourth Generation and Dynamical Electroweak Symmetry Breaking Michio Hashimoto (KEK) Kairaku-en M.H., Miransky, M.H., Miransky,
Chiral freedom and the scale of weak interactions.
Implication of 126 GeV Higgs for Planck scale physics 1 Satoshi Iso (KEK, Sokendai) with Y.Orikasa (Osaka) to appear in PTEP Higgs was discovered.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Chiral freedom and the scale of weak interactions.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
The Top Quark and Precision Measurements S. Dawson BNL April, 2005 M.-C. Chen, S. Dawson, and T. Krupovnikas, in preparation M.-C. Chen and S. Dawson,
4 th Generation Leptons in Minimal Walking Technicolor Theory Matti Heikinheimo University of Jyväskylä.
Chiral freedom and the scale of weak interactions.
Fermion Masses and Unification Steve King University of Southampton.
CUSTODIAL SYMMETRY IN THE STANDARD MODEL AND BEYOND V. Pleitez Instituto de Física Teórica/UNESP Modern Trends in Field Theory João Pessoa ─ Setembro 2006.
Chiral freedom and the scale of weak interactions.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
Mitsuru Kakizaki (University of Toyama)
DEWSB, quark mass hierarchy, and Fourth Family Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, PRD80(2009)
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
Fermion Masses and Unification Steve King University of Southampton.
Geneva, October 2010 Dark Energy at Colliders? Philippe Brax, IPhT Saclay Published papers :
Associated production of the Higgs boson and a single top quark in the littlest Higgs model at Large Hadron Collier Shuo Yang.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
Center for theoretical Physics at BUE
P Spring 2003 L12Richard Kass The properties of the Z 0 For about ten years the Z 0 was studied in great detail at two accelerator complexes: LEP.
A Composite Little Higgs ZACKARIA CHACKO UNIVERSITY OF MARYLAND, COLLEGE PARK Puneet Batra.
2. Two Higgs Doublets Model
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
Takehiro Nabeshima University of Toyama ILC physics general meeting 9 jun Phenomenology at a linear collider in a radiative seesaw model from TeV.
Hep-ph/ , with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) Light KK modes in Custodially Symmetric Randall-Sundrum José Santiago Theory.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
1 THEORETICAL PREDICTIONS FOR COLLIDER SEARCHES “Big” and “little” hierarchy problems Supersymmetry Little Higgs Extra dimensions G.F. Giudice CERN.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez.
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
Scale invariance and the electroweak symmetry breaking Archil Kobakhidze with R. Foot, K.L. McDonald and R. R. Volkas: Phys. Lett. B655 (2007) Phys.
X ± -Gauge Boson Production in Simplest Higgs Matthew Bishara University of Rochester Meeting of Division of Particles and Fields August 11, 2011  Simplest.
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
Report on New Physics Subgroup Activities Nobuchika Okada (KEK) 5th general meeting of the ILC physics working group May 31, KEK Past activities.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
1 Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK.
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
QFTHEP – A.Beylin, V.Beylin, A.Pivovarov SFU, MIPT Scenarios of Higgs bosons and Z’ manifestations in the minimal gauge extension.
Higgs boson pair production in new physics models at hadron, lepton, and photon colliders October Daisuke Harada (KEK) in collaboration.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Family Gauge Bosons with an Inverted Mass Hierarchy Yoshio Koide (Osaka University) in collaboration with Toshifumi Yamashita (Maskawa Insititute, KSU)
Renormalization of the Higgs Triplet Model Mariko Kikuchi ( Univ. of Toyama ) Collaborators M. Aoki ( Kanazawa Univ. ), S. Kanemura ( Univ. of Toyama ),
Diquark Higgs production at LHC Nobuchika Okada Theory Division, High Energy Accelerator Research Organization (KEK) In collaboration with Rabindra Nath.
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Measurements of the model parameter in the Littlest Higgs Model with T-parity 1 Masaki Asano (ICRR, Univ. of Tokyo) Collaborator: E. Asakawa ( Meiji-gakuin.
Durmu ş Ali Demir İ zmir Institute of Technology Reasons for … Results from … Extra U(1) in SUSY.
New Physics effect on Higgs boson pair production processes at LHC and ILC Daisuke Harada (KEK, Graduate University for Advanced Studies) in collaboration.
Charged Higgs boson decay in supersymmetric TeV scale seesaw model
Classically conformal B-L extended Standard Model
Generating Neutrino Mass & Electroweak Scale Radiatively
The MESSM The Minimal Exceptional Supersymmetric Standard Model
The Graduate University for Advanced Studies Masaki Asano hep-ph/
Electric Dipole Moments in PseudoDirac Gauginos
Split Two-Higgs Doublet and Neutrino Condensation
Shuo Yang Associated production of the Higgs boson and
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81 Phys.Rev.D80(2009)115007

The Standard Model is the best theory of describing the nature of particle physics, which is in excellent agreement with almost of all current experiments. However SM has hierarchy problem. It is the problem that the quadratic divergence in quantum corrections to the Higgs self energy, which should be canceled by the Higgs mass parameter with extremely high precision when the cutoff scale is much higher than the electroweak scale. 2 Λ:cutoff scale

Conformal symmetry and hierarchy problem 3 SM is classically conformal invariant except for the Higgs mass term. Possibility The chiral symmetry protects fermion masses, even in quantum level no fermion mass. The classical conformal symmetry protects mass scale. Even in quantum level this symmetry may protect the quadratic divergences. Therefore once this symmetry is imposed on SM, it can be free from hierarchy problem. W.A. Bardeen, FERMILAB-CONF T We know one similar example.

Classically conformal SM 4 If theory has the classical conformal invariance, the Higgs mass term is forbidden. Therefore there is no electroweak symmetry breaking at the classical level. We need to consider origin of the symmetry breaking. Coleman-Weinberg Mechanism (radiative symmetry breaking) Calculate quantum correction

CW potential in SM 5 The stability condition The extremum condition The CW mechanism occurs under the balance between the tree- level quartic coupling and the terms generated by quantum correction. ?

In the classically conformal SM, due to the large top mass the effective potential is rendered unstable, and CW mechanism does not work. 6 However, top quark is heavy, so the stability condition does not satisfy. The effective potential is not stabilized. We need to extend SM. We propose classically conformal minimal B-L extended model.

7

Classically conformal B-L extended Model Gauge symmetry New particles right-handed neutrino Three generations of right-handed neutrinos are necessarily introduced to make the model free from all the gauge and gravitational anomalies. SM singlet scalar The SM singlet scalar works to break the U(1)B-L gauge symmetry by its VEV. gauge field 8

Lagrangian We assume classical conformal invariance Yukawa sector Potential 9 Dirac YukawaMajorana Yukawa See-Saw mechanism associates with B-L symmetry breaking. The mass terms are forbidden by classical conformal invariance.

B-L symmetry breaking If the mixing term of SM doublet Higgs and singlet Higgs is very small, we consider SM sector and singlet Higgs sector separately. 10 small First, we consider singlet Higgs sector.

11 The potential minimal is realized by the balance between the tree-level quartic coupling and the 1-loop correction. The extremum condition The stability condition 1-loop CW potential This coupling relation generates the mass hierarchy between singlet scalar and Z’ boson.

12 In our model, if majorana Yukawa coupling is small, the stability condition satisfies. The potential has non-trivial minimum. B-L symmetry is broken by CW mechanism.

Electroweak symmetry breaking 13 Effective tree-level mass squared is induced, and if λ’ is negative, EW symmetry breaking occurs as usual in the SM. Once the B-L symmetry is broken, the SM Higgs doublet mass is generated through the mixing term between H and Φ in the scalar potential. Φ has VEV M.

14

LEP bound 15 LEP experiments provided a severe constraint. LEP bound

Theoretical bound 16 The bound of B-L gauge coupling We impose the condition that B-L gauge coupling does not blow up to Planck scale. For TeV scale B-L symmetry breaking, we find αB-L scale Planck scale

Naturalness constraint We should take care of the loop effects of the heavy states, since there is a small hierarchy between the electroweak scale and the B-L breaking scale. Here we estimate the loop corrections of heavy states on the Higgs boson mass. We have imposed the classical conformal invariance to solve the gauge hierarchy problem. 17 Once B-L symmetry is broken, heavy states associated with this breaking contribute to effective Higgs boson mass.

The dominant contribution comes from 2-loop effect involving the top-quarks and the Z’ boson, because of the large top Yukawa coupling. This contribution should be smaller than the EW scale. Naturalness constraint 18

Summary of phenomenological bound 19 U(1)Y The figure indicates that if the B-L gauge coupling in not much smaller than the SM gauge couplings, Z’ boson mass is around a few TeV. Coupling blow up Disfavored by naturalness LEP excluded

20

Z’ boson at LHC 21 We calculate the dilepton production cross section through the Z’ boson exchange together with the SM processes mediated by Z boson and photon. SM background Z’ exchange A clear peak of Z’ resonance

Z’ boson at ILC (International Linear Collider) 22 We calculate the cross section of the process → at the ILC with a collider energy =1 TeV. The deviation of the cross section in our model from the SM one is shown as a function of Z’ boson mass. Assuming the ILC is accessible to 1% deviation, the TeV scale Z’ boson can be discovered at ILC.

Allowed parameter region together with search reach at future colliders The figure indicates that if the B-L gauge coupling in not much smaller than the SM gauge couplings, Z’ gauge boson can be discovered by near future collider experiments. 23

Conclusions The classical conformal theory may be free from the hierarchy problem. CW mechanism does not work in classically conformal SM since the large top Yukawa coupling destabilizes the effective Higgs potential. SM needs to be extended. We propose the classically conformal minimal B- L model. 24

conclusion B-L symmetry and EW symmetry are broken by CW mechanism. Our model naturally predicts B-L breaking scale at TeV. Z’ boson can be discovered in the near future. Because of CW type symmetry breaking, the singlet Higgs boson mass is smaller than the Z’ gauge boson mass. 25