The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.

Slides:



Advertisements
Similar presentations
SYNTHESIS OF SUPER HEAVY ELEMENTS
Advertisements

Viola and the Heavy Elements W. Loveland Oregon State University.
M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
Radiopharmaceutical Production
The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
The Dynamical Deformation in Heavy Ion Collisions Junqing Li Institute of Modern Physics, CAS School of Nuclear Science and Technology, Lanzhou University.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
At the End of the Nuclear Map Yuri Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow region,
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Fusion-Fission Dynamics for Super-Heavy Elements Bülent Yılmaz 1,2 and David Boilley 1,3 Fission of Atomic Nuclei Super-Heavy Elements (SHE) Measurement.
NECK FRAGMENTATION IN FISSION AND QUASIFISSION OF HEAVY AND SUPERHEAVY NUCLEI V.A. Rubchenya Department of Physics, University of Jyväskylä, Finland.
1 Role of the nuclear shell structure and orientation angles of deformed reactants in complete fusion Joint Institute for Nuclear Research Flerov Laboratory.
A. Dokhane, PHYS487, KSU, 2008 Chapter2- Nuclear Fission 1 Lecture 3 Nuclear Fission.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
Status of the experiments on the synthesis of Element 117
Role of mass asymmetry in fusion of super-heavy nuclei
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Dinuclear system model in nuclear structure and reactions.
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
14th INTERNATIONAL CONFERENCE ON NUCLEAR REACTION MECHANISMS Formation, separation and detection of evaporation residues produced in complete fusion reactions.
7-1 CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics.
ELEMENTS atomic number = Z = number of protons = p mass number = number of nucleons = p + n atomic mass = experimental measurement of the mass of the.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Synthesis of superheavy elements at FLNR S. DMITRIEV Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, , Russia.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
II. Fusion and quasifission with the dinuclear system model Second lecture.
Isotope dependence of the superheavy nucleus formation cross section LIU Zu-hua( 刘祖华) (China Institute of Atomic Energy)
POPULATION OF GROUND-STATE ROTATIONAL BANDS OF SUPERHEAVY NUCLEI PRODUCED IN COMPLETE FUSION REACTIONS A.S. Zubov, V.V. Sargsyan, G.G. Adamian, N.V.Antonenko.
Known nuclides PROPERTIES OF FUNDAMENTAL PARTICLES Particle Symbol Charge Mass (x Coulombs) (x kg) Proton P Neutron N.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 104 th Session, 25 September 2008, Dubna.
Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research SHE in JINR 109 th Session of the JINR Scientific Council Feb.17-18,
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
Quasifission reactions in heavy ion collisions at low energies A.K. Nasirov 1, 2 1 Joint Institute for Nuclear Research, Dubna, Russia 2 Institute.
Radiochemistry Dr Nick Evans
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
Observation of new neutron-deficient multinucleon transfer reactions
Nuclear Reaction Mechanisms in Heavy Ion Collisions 1 Joint Institute for Nuclear Research, Dubna, Russia Nasirov A.K. 1 Lecture III 1 Permanent position.
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 102 nd Session, September 2007, Dubna.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Knyazheva G.N. Flerov Laboratory of Nuclear Reactions Asymmetric quasifission in reactions with heavy ions TAN 11, Sochi, Russia.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Oct. 16 th, 2015, Yonsei. RAON 2 Far from Stability Line 3.
Asymmetric quasifission in reactions with heavy ions
Study of Heavy-ion Induced Fission for Heavy Element Synthesis
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
Fusion reactions with light stable and neutron-rich nuclei:
采用热熔合方法合成超重核的理论研究 王楠 深圳大学 合作者: 赵恩广 (中科院 理论物理所) 周善贵 (中科院 理论物理所)
Sensitivity of reaction dynamics by analysis of kinetic energy spectra of emitted light particles and formation of evaporation residue nuclei.
Experiment SHIP: Fusion without “extrapush“
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
New Transuranium Isotopes in Multinucleon Transfer Reactions
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Status report Experiment IS550 P-344:
Presentation transcript:

The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

The dynamics of the fusion-fission of superheavy nuclei Experimental results. The peculiarities of the observables, the signatures of the Fusion-Fission/Quasi-Fission processes, multimodal fission phenomena The recent results on synthesis of superheavy nuclei The perspectives of the “hot” fusion reaction for the production of superheavy nuclei

Shape evolution in Fusion-Fission reactions Elastic scattering Coulomb excitation Quasi-elastic scattering Deep-inelastic scattering Incomplete pulse transfer Fast-fission Quasi-fission Fusion → CN → Fission Fusion → CN → de-excitation (n,  )→ ER In dependence on impact parameter and projectile energy :

Kinematics coincidence method. Double arm time-of-flight spectrometer CORSET

Experimental results The sharp change of the MED triangular shape for the reaction 48 Ca+ 208 Pb, where Fusion-Fission process dominates, to the Quasi-Fission shape of MED for the nuclei. The wide two-humped mass distribution with high peak of heavy fragment near double magic lead (M H  208) for the Quasi- Fission process. In spite of the dominating role of the Quasi-Fission process for these reactions we assume that in the symmetric region of the fragment masses (A/2  20) FF process coexists with QF. The Fusion-Fission mass distribution is asymmetric in shape with mass of the light fragment M L  amu ( see on the framings) Mass-energy distributions of the fission fragments of nuclei produced in “hot” fusion reactions with 48 Ca-projectiles E*  33 MeV

Mass Asymmetry in Low Energy Fission of Superheavy nuclei E*  MeV

Hot fusion reaction 48 Ca Cm  Fusion-Fission Dynamics M.G.Itkis, Yu.Ts.Oganessian, V.I.Zagrebaev, Phys.Rev.C65,2002, Total kinetic energy (MeV) Mass asymmetry (A 1 -A 2 )/(A 1 +A 2 ) Fragment mass number (u) Yield,%

Cold fusion reaction

Neutron and  -emission as probe FF/QF Neutron multi-detectors “DEMON” with trigger of fission fragments “CORSET” Two-dimensional matrixes TKE-Mass, Mass Yields, neutron multiplicities ( pre, post and tot ) for the reactions 48 Ca+ 208 Pb and 48 Ca+ 238 U

Total neutron multiplicities as function of atomic number of compound nuclei produced in the reaction with 26 Mg, 48 Ca and 58 Fe-projectiles Two-dimensional matrixes TKE-Mass, Mass Yields, neutron and  -multiplicities for the reaction with 48 Ca-projectiles on the targets 208 Pb, 238 U, 244 Pu, 248 Cm

Capture and Fusion-Fission Cross Sections The perspectives of the “hot” fusion reaction for the production of superheavy nuclei

Shell effects manifestation  QF /  cap (%)

. Fusion probability

σ xn = P xn ∙ Π (Γ n / Γ f ) I ~ (Γ n / Γ f ) x (Γ n / Γ f ) I ~ exp [(B f – B n ) / T] i=1 i=x where B f = B f LD + ΔE Shell 0 Survival probability the limit of the exp. sensitivity

Natural occurrence of Ca isotopes (in %): 40 Ca – Ca – Ca – Ca – Ca – Ca – x 400 → Ca 5+ isotope production high flux reactors (Oak Ridge, Dimitrovgrad ) isotope enrichment 98-99% S-2 separator (Sarov) technology of the target preparation – 0.3 mg/cm 2 Separation of super heavy nuclei and detection of their radioactive decays now: DGFRS

v ( A=48 ) = 0.11 c q = v ( A=288 ) = c q = 6.2+

Isotope charge (Z) and mass (A) identifications obtained by the measurements of neutron evaporation cross sections vs. excitation energy of compound nucleus

Decay Chains Observed in 243 Am + 48 Ca Reaction

odd-odd 

Synthesis of Element 118 in 249 Cf + 48 Ca Reaction Cm+ 48 Ca 242 Pu+ 48 Ca 238 U+ 48 Ca MeV 26.3 ms 0.68 s  2  SF(~90%) SF(~30%) MeV 970. MeV 7.87 s 0.28 s  4  9.5 MeV 8.53 MeV 0.3 s 2.80 min  6  9.30 MeV 1.84 h SF MeV 6.23 ms 0.55 s  2  1.0 ms SF SF(~60%) 10.5 MeV

Number of observed decays Z =

The formation of in the reactions with 48 Ca and 50 Ti-ions Mass-energy distributions of the fission fragments

Capture cross sections for the reactions 50 Ti+ 244 Pu and 48 Ca+ 246 Cm

N=174 N=182 N=184 N=184 Reactions of the production of elements with 58 Fe and 64 Ni-projectiles

10 8 y 10 5 y 1 y1 y 1 d1 d the search for SHE in Cosmic rays

Search in Nature Chemical properties (relativistic effect) Astrophysics (search for SHE in cosmic rays) Nucleosynthesis (test of the r-s process) Atomic physics (structure of SH-atoms) Elements with Z ≥ 120

Flerov Laboratory of Nuclear Reactions of JINR …in February Thanks for your attention