ACTIVE GALAXIES and GALAXY EVOLUTION

Slides:



Advertisements
Similar presentations
Tom Esposito Astr Feb 09. Seyfert 1, Seyfert 2, QSO, QSO2, LINER, FR I, FR II, Quasars, Blazars, NLXG, BALQ…
Advertisements

February 9, 11:00 am. The unusually bright centers found in some galaxies are called 1.active galactic nuclei. 2.starbursts. 3.halos. 4.supermassive.
“Do I have your attention…?”
Active Galactic Nuclei Very small angular size: point like High luminosity: compared to host galaxies Broad-band continuum emission: radio to TeV Strong.
1 Galactic Groupings and Active Galactic Nuclei Topics Clusters and superclusters; Giant Elliptical Formation Starburst and other explosive galaxies; Seyferts,
AST101 The Evolution of Galaxies. Virgo Cluster Collisions of Galaxies Outside of Clusters (the field), most galaxies are spiral or irregular In dense.
Active Galactic Nuclei Astronomy 315 Professor Lee Carkner Lecture 19.
QUASARS Monsters of the ancient Universe Professor Jill Bechtold Steward Observatory Tucson Amateur Astronomers, Dec. 6, 2002.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Galaxies with Active Nuclei Chapter 17. You can imagine galaxies rotating slowly and quietly making new stars as the eons pass, but the nuclei of some.
Chapter 25: Quasars and active galaxies Features of quasars Quasars and distant galaxies Seyfert and radio galaxies Active galactic nuclei Supermassive.
Active Galaxies PHYS390 Astrophysics Professor Lee Carkner Lecture 22.
ASTR100 (Spring 2008) Introduction to Astronomy Galaxy Evolution & AGN Prof. D.C. Richardson Sections
Galaxies and the Foundation of Modern Cosmology II.
Galaxies and the Foundation of Modern Cosmology III.
Active Galactic Nuclei Thomas Schlenker University of Washington Department of Physics PHYS 496 -What is an AGN? -What kinds of AGN’s are out there? -Unified.
Active Galactic Nuclei Ay 16, April 8, AGN DEFINITION PROPERTIES GRAVITATIONAL LENSES BLACK HOLES MODELS.
Galaxies With a touch of cosmology. Types of Galaxies Spiral Elliptical Irregular.
Chapter 20: Galaxies So far we have talked about “small” things like stars, nebulae and star clusters. Now it’s time to get big!
Chapter 24 Normal and Active Galaxies. The light we receive tonight from the most distant galaxies was emitted long before Earth existed.
Christopher | Vlad | David | Nino SUPERMASSIVE BLACK HOLES.
15.3 Galaxy Evolution Our Goals for Learning How do we observe the life histories of galaxies? How did galaxies form? Why do galaxies differ?
Quasars and Other Active Galaxies
Galaxies Live in Clusters Hickson Fornax. Coma Virgo.
Chapter 24 Galaxies. 24.1Hubble’s Galaxy Classification 24.2The Distribution of Galaxies in Space 24.3Hubble’s Law 24.4Active Galactic Nuclei Relativistic.
Black holes: do they exist?
 Galaxies with extremely violent energy release in their nuclei  Active Galactic Nuclei (AGN)  Up to many thousand times more luminous than the entire.
This is the Local Group of galaxies, about 45 galaxies within about 1 Mpc of the Milky Way. Most are dwarf-elliptical or iregular. A distance of one million.
Our goals for learning How did Hubble prove galaxies lie beyond our galaxy? How do we observe the life histories of galaxies? How did galaxies form? Why.
AGN (Continued): Radio properties of AGN I) Basic features of radio morphology II) Observed phenomena Superluminal motion III) Unification schemes.
1 Galaxies The Andromeda Galaxy - nearest galaxy similar to our own. Only 2 million light years away! Galaxies are clouds of millions to hundreds of billions.
Cosmology and extragalactic astronomy Mat Page Mullard Space Science Lab, UCL 7. Quasars.
Lecture 12 Astronomy /27/07. Looking Back Through Time Recall that looking at distant objects is the same as looking backwards through time The.
Active Galaxies Definition – –Amount of Energy –Type of Energy Non-thermal Polarized Other characteristics –Emission spectra Hydrogen – Balmer series &
Galaxies (And a bit about distances). This image shows galaxy M 100 in which the Hubble Space Telescope detected Cepheid variables.
Galaxy Formation Formation of galaxies in cold dark matter universe.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
ASTR 113 – 003 Spring 2006 Lecture 11 April 12, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
15.4 Quasars and Other Active Galactic Nuclei Our Goals for Learning What are quasars? What is the power source for quasars and other active galactic nuclei?
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Quasars and Active Galactic Nuclei
Active Galaxies and Supermassive Black Holes Chapter 17.
Quasars and Other Active Galaxies
NOTES: Active Galactic Nuclei (AGN) QUASARS: Radio Quasi-Stellar Objects. Maarten Schmidt examined 3C273 (3C=Third Cambridge Catalog of Radio sources)
Active Galactic Nuclei Chapter 26 Revised Active Galactic Nuclei Come in several varieties; Starburst Nuclei – Nearby normal galaxies with unusually.
Copyright © 2010 Pearson Education, Inc. Chapter 16 Galaxies and Dark Matter Lecture Outline.
Quasars, Active Galaxies, and Gamma-Ray Bursters Chapter Twenty-Seven.
© 2010 Pearson Education, Inc. Galaxies. © 2010 Pearson Education, Inc. Hubble Deep Field Our deepest images of the universe show a great variety of galaxies,
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
Peculiar (colliding) Galaxies and Active Galaxies Colliding galaxies  tidal distortions, star formation, evolution (role of simulations) Active galaxies.
Chapter 25 Galaxies and Dark Matter. 25.1Dark Matter in the Universe 25.2Galaxy Collisions 25.3Galaxy Formation and Evolution 25.4Black Holes in Galaxies.
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Chapter 20 Cosmology. Hubble Ultra Deep Field Galaxies and Cosmology A galaxy’s age, its distance, and the age of the universe are all closely related.
Astronomy 1020 Stellar Astronomy Spring_2016 Day-38.
Universe Tenth Edition Chapter 24 Quasars and Active Galaxies Roger Freedman Robert Geller William Kaufmann III.
Galaxies with Active Nuclei
Announcements Grades for third exam are now available on WebCT
Peculiar (colliding) Galaxies and Active Galaxies
Quasars, Active Galaxies, and super-massive black holes
Chapter 21 Galaxy Evolution
Chapter 21 Galaxy Evolution and Black Holes
Cygnus X-1 is a Black Hole Binary
ACTIVE GALAXIES and GALAXY EVOLUTION
ACTIVE GALAXIES and GALAXY EVOLUTION
Quasars and Active Galactic Nuclei
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Galaxies With Active Nuclei
NOTES: Active Galactic Nuclei (AGN)
Galaxies With Active Nuclei
Presentation transcript:

ACTIVE GALAXIES and GALAXY EVOLUTION Quasars, Radio Galaxies, Seyfert Galaxies and BL Lacertae Objects Immense powers emerging from ACTIVE GALACTIC NUCLEI: it’s just a phase they’re going through!

How do we observe the life histories of galaxies?

Deep observations show us very distant galaxies as they were much earlier in time (Old light from young galaxies)

How did galaxies form?

We still can’t directly observe the earliest galaxies

Our best models for galaxy formation assume: Matter originally filled all of space almost uniformly Gravity of denser regions pulled in surrounding matter

Denser regions contracted, forming protogalactic clouds H and He gases in these clouds formed the first stars

Supernova explosions from first stars kept much of the gas from forming stars Leftover gas settled into spinning disk Conservation of angular momentum

But why do some galaxies end up looking so different? NGC 4414 M87 But why do some galaxies end up looking so different?

Why do galaxies differ?

Why don’t all galaxies have similar disks?

Conditions in Protogalactic Cloud? Spin: Initial angular momentum of protogalactic cloud could determine size of resulting disk

Conditions in Protogalactic Cloud? Density: Elliptical galaxies could come from dense protogalactic clouds that were able to cool and form stars before gas settled into a disk Elliptical vs. Spiral Galaxy Formation

Start with the Mildly Active or Peculiar Galaxies STARBURST galaxies -- 100's of stars forming per year, but spread over some 100's of parsecs. Other PECULIAR galaxies involve collisions or mergers between galaxies. Sometimes produce strong spiral structure (e.g. M51, the "Whirlpool") Sometimes leave long tidal tails (e.g. the "Antennae" galaxies) Sometimes leave "ring" galaxy structures--an E passing through a S. Sometimes see shells of stars around Es

Peculiar Galaxies: Starburst (NGC 7742) , Whirlpool (M51), Antennae (NGC 4038/9) in IR, Ring (AM 0644-741)

Colliding Galaxies “Cartwheel” ring galaxy Antennae, w/ starbursts and a simulation: a collision in progress Collision Simulation Movie

Collisions may explain why elliptical galaxies tend to be found where galaxies are closer together Stat here on 4/14

Giant elliptical galaxies at the centers of clusters seem to have consumed a number of smaller galaxies

Starburst galaxies are forming stars so quickly they would use up all their gas in less than a billion years

4 MAIN CLASSES of AGN Radio Galaxies Quasars Seyfert Galaxies BL Lacertae Objects (or Blazars with some Quasars and some Radio Galaxies) All are characterized by central regions with NON-THERMAL radiation dominating over stellar (thermal) emission

Thermal vs. Non-Thermal Spectra. Normal mostly from stars, Thermal vs. Non-Thermal Spectra Normal mostly from stars, Active mostly synchrotron

RADIO GALAXIES All are in Elliptical galaxies Two oppositely directed JETS emerge from the galactic nucleus They often feed HOT-SPOTS and and LOBES on either side of the galaxy Radio source sizes often 300 kpc or more --- much bigger than their host galaxies. Head-tail radio galaxies arise when jets are bent by the ram-pressure of gas as the host galaxy moves through it. For powerful sources only one jet is seen: this is because of RELATIVISTIC DOPPER BOOSTING: the approaching jet appears MUCH brighter than an intrinsically equal receding jet since moving so FAST; Can yield CORE DOMINATED RGs

Radio Galaxy: Centaurus A

Cygnus A and M87 Jet

Radio Lobes Dwarf Big Galaxy

Core Dominated RG (M86)

QUASAR PROPERTIES QUASI-STELLAR-OBJECT: (QSO): i.e., it looks like a STAR BUT: NON-THERMAL SPECTRUM UV excess (not like a star) BROAD EMISSION LINES  Rapid motions VERY HIGH REDSHIFTS  not a star, but FAR away. The current (2008) convincing record redshift is z = 6.4, i.e., light emitted in FAR UV at 100 nm is received by us in the near IR at 740 nm! HUGE DISTANCES  VERY LUMINOUS

NEWER QUASAR DISCOVERIES Only about 10% are RADIO LOUD Most show some VARIABILITY in POWER OVV (Optically Violently Variable) QUASARS change brightness by 50% or more in a year and are highly polarized QUASARS are AGN: surrounding galaxies detected, though small nucleus emits 10-1000 times MORE light than 1011 stars! “Brighter than a TRILLION suns”

Quasar 3C 273 Radio loud Rare OPTICAL jet, but otherwise looks like a star Relatively nearby quasar

Redshifted Spectrum of 3C 273

Typical Quasar Appearance Most are actually very faint BUT their huge redshifts imply they are billions of light-years away and intrinsically POWERFUL Start here on 11/12

Radio Loud Quasar, 3C 175

Thought Question What can you conclude from the fact that quasars usually have very large redshifts? A. They are generally very distant B. They were more common early in time C. Galaxy collisions might turn them on D. Nearby galaxies might hold dead quasars

Thought Question What can you conclude from the fact that quasars usually have very large redshifts? A. They are generally very distant B. They were more common early in time C. Galaxy collisions might turn them on D. Nearby galaxies might hold dead quasars All of the above!

Birth of a Quasar Movie Fast variability implies small size Immense powers emerging from a volume similar to the solar system!

SEYFERT GALAXIES Sa, Sb galaxies with BRIGHT, SEMI-STELLAR NUCLEI NON-THERMAL & STRONG EMISSION LINES VARIABLE in < 1 yr  COMPACT CORE Type 1: Broad Emission lines (like QSOs), strong in X-rays Type 2: Only narrow Emission lines, weak in X-rays About 1% of all Spirals are SEYFERTS, so Either 1% of all S's are always Seyferts OR 100% of S's are Seyferts for about 1% of the time (MORE LIKELY) OR 10% of S's are Seyferts for about 10% of the time (or any other combination of fraction and lifetime) Start here on 11/29 and 11/30

A Seyfert and X-ray Variability Circinus, only 4 Mpc away; 3C 84

More About Seyferts Seyferts are weak radio emitters. CONCLUSIONS ABOUT SEYFERTS Fundamentally, they are WEAKER QSOs Type 1: we see the center more directly Type 2: dusty gas torus blocks view of the center

BL Lacertae Objects NON-THERMAL SPECTRUM: Radio through X-ray (and gamma-ray) Radiation strongly POLARIZED HIGHLY VARIABLE in ALL BANDS But (when discovered) NO REDSHIFT, so distances unknown Later, surrounding ELLIPTICAL galaxies found CONCLUSION: greatly enhanced emission from the AGN due to RELATIVISTIC BOOSTING of a JET pointing very close to us. BL Lacs + OPTICALLY VIOLENTLY VARIABLE QUASARS ARE OFTEN CALLED BLAZARS

AGN CONTAIN SUPERMASSIVE BLACK HOLES (SMBHs) KEY LONGSTANDING ARGUMENTS: ENERGETICS: Powers up to 1048 erg/s (1041W) Even at 100% efficiency would demand conversion of about 18 M /yr (=Mdot) into energy. Nuclear processes produce < 1% efficiency. GRAVIATIONAL ENERGY via ACCRETION can produce between 6% (non-rotating BH) and 32% (fastest-rotating BH),and the Luminosity is L = G MBH Mdot / R, with R the main distance from the Super Massive Black Hole (SMBH) where mass is converted to energy.

Time Variability tVAR = R / c tVAR = 104 s  R = 3 x 1014 cm = 10-4 pc For L = 1047 erg/s, M_dot = 10 M /yr we get MBH = 3 x 108 M and RS = 9 x 1013 cm So, R = 3 RS MUTUALLY CONSISTENT POWERS AND TIMESCALES.

RECENT OBSERVATIONAL SUPPORT The Hubble Space Telescope has revealed that star velocities rise to very high values close to center of many galaxies and gas is orbiting rapidly, e.g. M87 Disks have been seen via MASERS in some nearby Seyfert AGN. VLBI: radio jets formed within 1 pc of center. There are several other more technical lines of evidence also supporting the SMBH hypothesis for AGN.

Rapidly Rotating Gas in M87 Nucleus M87 zoom toward black hole

Direct Evidence for Rotating Disk Masers formed in warped disk in NGC 4258 (and a few other Seyfert galaxies)

Evidence for Supermassive Black Holes NGC 4261: at core of radio emitting jets is a clear disk ~300 light-yrs across and knot of emission near BH

SMBH Model for AGN

UNIFIED MODELS FOR AGN Three main parameters: MBH; the accretion rate, M_dot, and viewing angle to the accretion disk axis,  Main ingredients: SMBH > 106 M 10-5 pc < accretion disk < 10-1 pc (AD) broad line clouds < 1 pc (BLR) thick, dusty, torus < 100 pc narrow line clouds < 1000 pc (NLR) sometimes, a JET (usually seen from < 102 pc to maybe 106 pc!) Start here on 4/16

Unification for Radio Quiet and Radio Loud High MBH, M_dot:  small: QSO is seen including AD and BLR  large: only NLR plus radiating torus: seen as UltraLuminous InfraRed Galaxies (ULIRGs) Low MBH, M_dot:  small: Seyfert Type 1  big: Seyfert Type 2 RADIO LOUD (Jets) High MBH, M_dot:  very small: Optically Violently Variable Quasar  small: radio loud quasar (QSR)  large: classical double radio galaxy (FR II type) Low MBH. M_dot:  very small: BL Lac object  small: broad line radio galaxy (FR I type)  large: narrow line radio galaxy

Different AGN from Different Angles Luminous: Quasars seen close to perpendicular to disk and Ultraluminous Infrared Galaxies near disk plane Weaker: Type 1 or Type 2 Seyferts If jets are important: BL Lacs along jet axis, Quasars at modest angles & Radio Galaxies at larger angles

Black Holes in Galaxies Many nearby galaxies – perhaps all of them – have supermassive black holes at their centers These black holes seem to be dormant active galactic nuclei All galaxies may have passed through a quasar-like stage earlier in time

Galaxies and Black Holes Mass of a galaxy’s central black hole is closely related to mass of its bulge