© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions.

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 1: AS Core Modules
Advertisements

“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 47: Solving Differential Equations.
12: The Quotient Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
1: Straight Lines and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
20: Stretches © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 6: Differentiating.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 2: A2 Core Modules
44: Stretches of the Trigonometric Functions © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9: Linear and Quadratic Inequalities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
5: The Chain Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
38: The graph of tan  © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: The Product Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
Cumulative Distribution Function
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
3: Quadratic Expressions Expanding Brackets and
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
Presentation transcript:

© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions

Integrating the Simple Functions "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages" Module C3 OCR

Integrating the Simple Functions Before we look again at integration we need to remind ourselves how to differentiate the simple functions. What goes here?

Integrating the Simple Functions We also need to know that multiplying constants just “tag along” and that terms like the above can be differentiated independently when they appear in sums and differences. e.g.

Integrating the Simple Functions Indefinite integration is just the reverse of differentiation, so, reading the differentiation table from right to left, we get: so we use We don’t want to remember the formula with,

Integrating the Simple Functions Indefinite integration is just the reverse of differentiation, so, reading the differentiation table from right to left, we get: is only defined for x > 0, so we write which means negative signs are ignored.

Integrating the Simple Functions SUMMARY Which function is “missing” from the l.h.s. and why?

Integrating the Simple Functions SUMMARY We can’t yet integrate since we haven’t found a function that differentiates to give.

Integrating the Simple Functions We will next practise using the integrals of the simple functions by evaluating some definite integrals and finding some areas. Reminder: To find we write If, by mistake, we do a similar thing with ( forgetting that it gives ), we get. Why is this impossible? Then, using the 1 st rule ANS: We can’t divide by zero.

Integrating the Simple Functions e.g. 1. Evaluate the following integrals: Solutions: (a) Be careful here... Substituting x = 0 does not give 0. (a) (b)

Integrating the Simple Functions Solutions: (a) The integral gives the shaded area. We need to remember that e.g. 1. Evaluate the following integrals: (a) (b)

Integrating the Simple Functions (b) Since the limits are positive, the mod sign makes no difference so we can now omit it.

Integrating the Simple Functions Exercises Evaluate the following integrals: In each case sketch a graph and briefly explain how your answer relates to area.

Integrating the Simple Functions Solutions: 1. The areas above and below the axis are equal, but the integral for the area below is negative.

Integrating the Simple Functions The area is above the axis, so the integral gives the entire area. 2.

Integrating the Simple Functions

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

Integrating the Simple Functions SUMMARY

Integrating the Simple Functions Solutions: (a) The integral gives the shaded area. We need to remember that e.g. 1. Evaluate the following integrals: (a) (b)

Integrating the Simple Functions Since the limits are positive, the mod sign makes no difference so we can now omit it. N.B. When working out definite integrals we need to remember that some functions don’t give 0 when x = 0. In particular, (b)