Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:

Slides:



Advertisements
Similar presentations
1 Imaging Techniques for Flow and Motion Measurement Lecture 11 Lichuan Gui University of Mississippi 2011 Interrogation Window Shift.
Advertisements

Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
QR Code Recognition Based On Image Processing
CS Spring 2009 CS 414 – Multimedia Systems Design Lecture 4 – Digital Image Representation Klara Nahrstedt Spring 2009.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Improvement of Audio Capture in Handheld Devices through Digital Filtering Problem Microphones in handheld devices are of low quality to reduce cost. This.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Instructor: Lichuan Gui
1 Imaging Techniques for Flow and Motion Measurement Lecture 6 Lichuan Gui University of Mississippi 2011 PIV Recording Evaluation.
1 Imaging Techniques for Flow and Motion Measurement Lecture 21 Lichuan Gui University of Mississippi 2011 Shadowgraph, Schielieren and Speckle Photography.
Imaging Techniques for Flow and Motion Measurement Lecture 13 Lichuan Gui University of Mississippi 2011 Central Difference Interrogation.
Error Estimation in Digital Image Correlation Caused by Rigid Particles By Xiaodan (Danna) Ke.
Properties of 2D discrete FFT  Fixed sample size Size of window has to be a base-2 dimension, 32x32, or 64x64  Periodicity assumption Particle image.
ADSP Final Project 2005/12/7. Option1: Channel Equalizer H Channel H + S N R=S*H+N In frequency domain.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Stereoscopic PIV.
1 Imaging Techniques for Flow and Motion Measurement Lecture 7 Lichuan Gui University of Mississippi 2011 Correlation Interrogation & FFT Acceleration.
Instructor: Lichuan Gui
CGMB214: Introduction to Computer Graphics
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Instructor: Lichuan Gui
Volumetric 3-Component Velocimetry (V3V)
By Meidika Wardana Kristi, NRP  Digital cameras used to take picture of an object requires three sensors to store the red, blue and green color.
Particle Image Velocimetry (PIV) Introduction
1 Imaging Techniques for Flow and Motion Measurement Lecture 5 Lichuan Gui University of Mississippi 2011 Imaging & Recording Techniques.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Particle Image Velocimetry 2 and Particle Tracking Velocimetry
The Digital Image Dr. John Ryan.
Ping Zhang, Zhen Li,Jianmin Zhou, Quan Chen, Bangsen Tian
1 Imaging Techniques for Flow and Motion Measurement Lecture 18 Lichuan Gui University of Mississippi 2011 Large-scale PIV and Stereo High-Speed Imaging.
Digital Cameras And Digital Information. How a Camera works Light passes through the lens Shutter opens for an instant Film is exposed to light Film is.
1 Imaging Techniques for Flow and Motion Measurement Lecture 2 Lichuan Gui University of Mississippi 2011 Digital Image & Image Processing.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
1 LES of Turbulent Flows: Lecture 16 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Fall 2014.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
1 Imaging Techniques for Flow and Motion Measurement Lecture 15 Lichuan Gui University of Mississippi 2011 Multi-phase Flow PIV Techniques.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Exposing Digital Forgeries in Color Filter Array Interpolated Images By Alin C. Popescu and Hany Farid Presenting - Anat Kaspi.
1 Imaging Techniques for Flow and Motion Measurement Lecture 19 Lichuan Gui University of Mississippi 2011 Stereoscopic Particle Image Velocimetry (SPIV)
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Elementary Mechanics of Fluids Lab # 3 FLOW VISUALIZATION.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
1 Imaging Techniques for Flow and Motion Measurement Lecture 10 Lichuan Gui University of Mississippi 2011 Direct Correlation & MQD Method.
Particle Image Velocimetry Demo Outline (For reference) ‏ Topic NumberTopic NamePage Type 1Flow of PIVAnimated page.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
Imaging Techniques for Flow and Motion Measurement Lecture 14 Lichuan Gui University of Mississippi 2011 Central Difference Image Correction.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
0 Assignment 1 (Due: 10/2) Input/Output an image: (i) Design a program to input and output a color image. (ii) Transform the output color image C(R,G,B)
Examinations of the relative alignment of the instruments on SOT
Elementary Mechanics of Fluids Lab # 3 FLOW VISUALIZATION
Elementary Mechanics of Fluids Lab # 3 FLOW VISUALIZATION
Interrogation windows High level PIV Architecture
Random Neural Network Texture Model
Presentation transcript:

Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan Gui Students are encouraged to attend the class. You may not be able to understand by just reading the lecture notes.

2 Lecture 31. Central Difference Image Correction

PIV Recording with Distorted Image Pattern Correlation interrogation without window shift g 1 (i,j)g 2 (i,j) Correlation function of distorted image patterns No correlation high peak at the particle image displacement 3

= + Complex flowDistortionTanslation Complex flow that results in image distortion PIV Recording with Distorted Image Pattern - Pixel displacement = window shift + image distortion - Displacements of 9 points available with 50% window overlapping - Interpolation necessary to determine the image distortion function Image distortion function S dis (i,j) 4

Correlation interrogation with central difference window shift PIV Recording with Distorted Image Pattern Low contrast among correlation function high peaks f 1 (i,j) f 2 (i,j) Correlation function improved with window shift 5

Central difference window shift & image corection PIV Recording with Distorted Image Pattern Clear correlation function high peak at the particle image displacement f 1 (i,j) f 2 (i,j) Correlation function improved with window shift (red) & image correction (blue) 6

Central Difference Image Correction (CDIC) Pixel displacement functions 7

9-point image corection method - Window shift determined with displacement in the window center, i.e. S ws =S 5 - Image distortion at the 9 points determined as - S dis (i,j) determined with interpolation according to S dis (k) - f(i,j) determined with interpolation according to S ws and S dis (i,j) - Particle image sisplacements at 9 points (S 1  S 9 ) determined according to a previus estimation Interrogation window Central Difference Image Correction (CDIC) - Mutipass interrogation with iterated number around 6. 8

4-point image corection method - Window shift determined with displacement in the window center, i.e. S ws =S 5 - Image distortion at the 4 points determined as - S dis (i,j) determined with bilinear interpolation according to S dis (k) - f(i,j) determined with bilinear interpolation according to S ws and S dis (i,j) - Particle image sisplacements at center and 4 corners (i.e. S 1, S 3, S 5, S 7, S 9 ) determined according to a previus evaluation Interrogation window Central Difference Image Correction (CDIC) - Mutipass interrogation with iterated number aropund 6. 9

Central Difference Image Correction (CDIC) Tests on image corection methods Tested with synthetic PIV recordings of simulated 4-roll-mill flow - Mutipass interrogation conveges after 6 iterations - 9-piont method better with given (ideal) displacements - 4-piont method better with with nulti-pass interations - RMS evaluation error reduction more than 50% 10

11 Test of CDIC with Four-Roll Mill Flow Top view Velocity field Without image correctionWith image correction 11

9-Point CDIC: Adjust Window Shift Possible 9-point image corection methods Interrogation window - Different ways to determine window shift S ws 12

Tests on image corection methods - Best in the ideal cases: 9P algorithm 0, i.e. - Best in iterated cases: 9P algorithm 3, i.e. Tested with synthetic PIV recordings of simulated periodical flow of wave length (L: window width) 9-Point CDIC: Adjust Window Shift 13

Different Base-algorithms for CDIC  Correlation interrogation better than correlation tracking for CDIC Test results with synthetic PIV recordings of simulated periodical flow 14

15 Image Pattern Correction Options 1. Central difference window shift & central difference image correction (CDIC) Image interpolation required for both the two evaluation samples 2. Central difference window shift & forward difference image correction (FDIC) When x pix1 and y pix1 are set to integer numbers, image interpolation only required for the second evaluation sample

Wereley ST, Gui L (2003) A correlation-based central difference image correction (CDIC) method and application in a four-roll-mill flow PIV measurement. Exp. Fluids 34, Gui L, Seiner JM (2004) An improvement in the 9-point central difference image correction method for digital particle image velocimetry recording evaluation. Meas. Sci. Technol. 15, References 16

1.How many gray value levels are there in a 8-bit grayscale digital image? What are the minimal and maximal gray value? 2.Please estimate the minimal file size in bytes of a uncompressed true color image of 1024x1024 pixels. 3.What is the look-up table (LUT) of a digital color image? 4.What is the pixel operation and what is the filter operation in digital image processing? 5.Please describe two pixel operations that can be used to increase the contrast of digital images. 6.Please describe two digital filters that can be used to reduce the low frequency background noise in digital PIV recordings. 7.Please list basic components of standard 2D PIV system. 8.Please explain how to obtain a double exposed PIV recording and a single exposed PIV recording pair. 9.What is the traditional evaluation method for a double exposed PIV recording in positive photo film? 10.Please explain how to use auto-correlation algorithm to evaluate a double exposed digital PIV recording. 11.Please explain how to use cross-correlation algorithm to evaluate a single exposed digital PIV recording pair. 12.What are limitations of the correlation-based interrogation algorithm? 13.Please list advantages and disadvantages of the correlation-based tracking algorithm when compared to the correlation interrogation algorithm. 14.Please explain how to enable arbitrarily sized interrogation window when using radix-2 FFT to accelerate the correlation interrogation algorithm. 15.Please explain how to accelerate the correlation-based tracking algorithm with radix-2 FFT. 16.Please briefly describe the discrete and continuous window shift method and their advantages. 17.Please briefly describe the central difference interrogation (CDI) method and explain why it is better than the forward difference interrogation (FDI) method. 18.Please briefly describe the central difference image correlation (CDIC) method and its advantages. 19.Please explain how to determine the sub-pixel displacement. Exercises for final exam