1 Spin Freezing in Geometrically Frustrated Antiferromagnets with Weak Bond Disorder Tim Saunders Supervisor: John Chalker.

Slides:



Advertisements
Similar presentations
Partition Coefficients Lecture 26. The Partition Coefficient Geochemists find it convenient to define a partition or distribution coefficient of element.
Advertisements

THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Second fermionization & Diag.MC for quantum magnetism KITPC 5/12/14 AFOSR MURI Advancing Research in Basic Science and Mathematics N. Prokof’ev In collaboration.
Strong Correlations, Frustration, and why you should care Workshop on Future Directions  For some other perspectives, see
Inelastic Magnetic Neutron Scattering on the Spin-Singlet Spin- ½ FCC System Ba 2 YMoO 6 Jeremy P. Carlo Canadian Neutron Beam Centre, National Research.
KIAS Emergence Workshop 2005 Manybody Physics Group SKKU Valence bond solid order through spin-lattice coupling Jung Hoon Han & Chenglong Jia Sung Kyun.
~20 Monte Carlo Study of the J 1 -J 2 antiferromagnetic XY model on the triangular lattice Department of Physics Sungkyunkwan University Jin-Hong.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Degeneracy Breaking in Some Frustrated Magnets Doron BergmanUCSB Physics Greg FieteKITP Ryuichi ShindouUCSB Physics Simon TrebstQ Station Itzykson meeting,
Degeneracy Breaking in Some Frustrated Magnets Doron BergmanUCSB Physics Greg FieteKITP Ryuichi ShindouUCSB Physics Simon TrebstQ Station HFM Osaka, August.
Magnetism in Chemistry. General concepts There are three principal origins for the magnetic moment of a free atom: The spins of the electrons. Unpaired.
Dipole Glasses Are Different from Spin Glasses: Absence of a Dipole Glass Transition for Randomly Dilute Classical Ising Dipoles Joseph Snider * and Clare.
Spin Liquid and Solid in Pyrochlore Antiferromagnets
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Monte Carlo Simulation of Ising Model and Phase Transition Studies
Geometric Frustration in Large Arrays of Coupled Lasers Near Field Far Field Micha Nixon Eitan Ronen, Moti Fridman, Amit Godel, Asher Friesem and Nir Davidson.
Magnetism III: Magnetic Ordering
The Ising Model of Ferromagnetism by Lukasz Koscielski Chem 444 Fall 2006.
Monte Carlo Simulation of Ising Model and Phase Transition Studies By Gelman Evgenii.
Relating computational and physical complexity Computational complexity: How the number of computational steps needed to solve a problem scales with problem.
Superglasses and the nature of disorder-induced SI transition
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Outline Review of extended ensemble methods (multi-canonical, Wang-Landau, flat-histogram, simulated tempering) Replica MC Connection to parallel tempering.
Classical Antiferromagnets On The Pyrochlore Lattice S. L. Sondhi (Princeton) with R. Moessner, S. Isakov, K. Raman, K. Gregor [1] R. Moessner and S. L.
Neutron Scattering from Geometrically Frustrated Antiferromagnets Spins on corner-sharing tetrahedra Paramagnetic phase Long Range Ordered phase (ZnCr.
Experimental Approach to Macroscopic Quantum Tunneling of Magnetization in Single Domain Nanoparticles H. Mamiya, I. Nakatani, T. Furubayashi Nanomaterials.
Impurities in Frustrated Magnets
1 Worm Algorithms Jian-Sheng Wang National University of Singapore.
Integrable Models and Applications Florence, September 2003 G. Morandi F. Ortolani E. Ercolessi C. Degli Esposti Boschi F. Anfuso S. Pasini P. Pieri.
The Ising Model Mathematical Biology Lecture 5 James A. Glazier (Partially Based on Koonin and Meredith, Computational Physics, Chapter 8)
Neutron Scattering of Frustrated Antiferromagnets Satisfaction without LRO Paramagnetic phase Low Temperature phase Spin glass phase Long range order Spin.
8. Selected Applications. Applications of Monte Carlo Method Structural and thermodynamic properties of matter [gas, liquid, solid, polymers, (bio)-macro-
The 5th Korea-Japan-Taiwan Symposium on Strongly Correlated Electron System Manybody Lab, SKKU Spontaneous Hexagon Organization in Pyrochlore Lattice Jung.
Second fermionization & Diag.MC for quantum magnetism
Molecular Modelling - Lecture 2 Techniques for Conformational Sampling Uses CHARMM force field Written in C++
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
KIAS workshop Sept 1, 2008 A tale of two spin chiralities in frustrated spin systems Jung Hoon Han (SungKyunKwan U, Korea)
The Magnetic phase transition in the frustrated antiferromagnet ZnCr 2 O 4 using SPINS Group B Ilir Zoto Tao Hong Yanmei Lan Nikolaos Daniilidis Sonoko.
13. Extended Ensemble Methods. Slow Dynamics at First- Order Phase Transition At first-order phase transition, the longest time scale is controlled by.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
1 Unusual magnetic ordering due to random impurities and frustration Tim Saunders Supervisor: John Chalker.
The quantum kicked rotator First approach to “Quantum Chaos”: take a system that is classically chaotic and quantize it.
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
From J.R. Waldram “The Theory of Thermodynamics”.
David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann) Eugene Demler (Harvard) The Hilbert-glass transition: Figuring.
Ashvin Vishwanath UC Berkeley
D=2 xy model n=2 planar (xy) model consists of spins of unit magnitude that can point in any direction in the x-y plane si,x= cos(i) si,y= sin(i)
Sub-Topics Introduction to Transition Metals
Percolation Percolation is a purely geometric problem which exhibits a phase transition consider a 2 dimensional lattice where the sites are occupied with.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Neutron Scattering of Frustrated Antiferromagnets Satisfaction without LRO Paramagnetic phase Low Temperature phases Spin glass phase Long range order.
Monte Carlo Simulation of Canonical Distribution The idea is to generate states i,j,… by a stochastic process such that the probability  (i) of state.
Eutectic Phase Diagram NOTE: at a given overall composition (say: X), both the relative amounts.
Computational Physics (Lecture 10) PHY4370. Simulation Details To simulate Ising models First step is to choose a lattice. For example, we can us SC,
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Monte Carlo Simulation of the Ising Model Consider a system of N classical spins which can be either up or down. The total.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Computational Physics (Lecture 10)
Electronic polarization. Low frequency dynamic properties.
Spin-Peierls Effect on Frustrated Spin Systems
Spontaneous Hexagon Organization in Pyrochlore Lattice
Model systems with interaction
Phase Transitions in Quantum Triangular Ising antiferromagnets
Chiral Spin States in the (SungKyunKwan U, Korea)
Spin-lattice Interaction Effects in Frustrated Antiferromagnets
Chiral Spin States in the Pyrochlore Heisenberg Magnet
Institute for Theoretical Physics,
Presentation transcript:

1 Spin Freezing in Geometrically Frustrated Antiferromagnets with Weak Bond Disorder Tim Saunders Supervisor: John Chalker

2 Talk Outline Low Temperature Properties of Clean Geometrically Frustrated Antiferromagnets Disorder: Experimental Background The Single Tetrahedron with Bond Disorder Nature of the Frozen State Monte Carlo Simulations: Spin-Freezing Phase Conclusions

3 What is Frustration? Lattice geometry versus magnetic interactions Lattice geometry versus magnetic interactions Examples: Examples: PyrochloreKagome Insulating magnetic materials Insulating magnetic materials

4 Ground State Properties Classical nearest-neighbour antiferromagnetic Hamiltonian: Ground state condition: sum of the spins on each unit is zero. Ground state condition: sum of the spins on each unit is zero. Groundstate is macroscopically degenerate Groundstate is macroscopically degenerate Main distinction between frustrated and unfrustrated magnets. Main distinction between frustrated and unfrustrated magnets. Can be rewritten as

5 Ground State Degeneracy K=nN ground state constraints K=nN ground state constraints (n=no. of spin components, N = no. of tetrahedra) (n=no. of spin components, N = no. of tetrahedra) F=(qN/2)(n-1) d.o.f. for spins F=(qN/2)(n-1) d.o.f. for spins (q= no. of spins per unit). (q= no. of spins per unit). Ground state dimension: F-K = N[n(q-2)-q]/2 Ground state dimension: F-K = N[n(q-2)-q]/2 Heisenberg spins on pyrochlore lattice (q=4): Heisenberg spins on pyrochlore lattice (q=4): (F-K)/N = 1 G.S. configuration can be freely rotated into another G.S. configuration with no energy cost G.S. configuration can be freely rotated into another G.S. configuration with no energy cost Macroscopic degeneracy Macroscopic degeneracy

6 Ground State Parameterisation Ground state equivalent to divergence-free condition on ‘magnetic flux’. Ground state equivalent to divergence-free condition on ‘magnetic flux’. Map spin components to flux lines on direct lattice – a diamond lattice for the pyrochlore. Map spin components to flux lines on direct lattice – a diamond lattice for the pyrochlore. The direct lattice must be bi-partite The direct lattice must be bi-partite The flux fields obey The flux fields obey Define vector potential A α - parameterises ground state. Define vector potential A α - parameterises ground state. Each ground state configuration is equivalent to a unique arrangement of flux lines. Used later to discuss effect of quenched disorder Each ground state configuration is equivalent to a unique arrangement of flux lines. Used later to discuss effect of quenched disorder

7 Experimental Background: Spin Freezing Pure system paramagnetic down to very low temperature. Pure system paramagnetic down to very low temperature. |θ c-w | ~ 450K, T f ~ 4K Nature of transition similar to spin glasses. Nature of transition similar to spin glasses. Susceptibility obeys Curie-Weiss law to temperatures <<|θ c-w | Susceptibility obeys Curie-Weiss law to temperatures <<|θ c-w | Typically, at T f <<|θ c-w |, there is a transition to a frozen state. Typically, at T f <<|θ c-w |, there is a transition to a frozen state. Sr Cr x Ga 12-x O 19 : Frozen spin state observed experimentally. Sr Cr x Ga 12-x O 19 : Frozen spin state observed experimentally.

8 Experimental Background:Structural Transition Zn Cr 2 O 4 – unusual transition observed. Zn Cr 2 O 4 – unusual transition observed. Jahn-Teller transition to ordered (Neèl) state in pure system at T N <<|θ c-w | Jahn-Teller transition to ordered (Neèl) state in pure system at T N <<|θ c-w | Lattice tetragonally distorts, changing exchange interactions and relieving frustration. Lattice tetragonally distorts, changing exchange interactions and relieving frustration.

9 Experimental Background: Random Strains Doping Cd for Zn – both non-magnetic ions – destroys all LRO for 3% doping. Doping Cd for Zn – both non-magnetic ions – destroys all LRO for 3% doping. Cd has ionic radius 1.3 times greater that of Zn. Cd has ionic radius 1.3 times greater that of Zn. Doping Ga for Cr - non-magnetic for magnetic doping - stable Neel state up to 25% doping. Expect to have much larger effect Doping Ga for Cr - non-magnetic for magnetic doping - stable Neel state up to 25% doping. Expect to have much larger effect

10 Questions: 1) 1)Why are the Nèel States in ZnCr 2 O 4 so sensitive to doping on sites occupied by non- magnetic ions? 2) 2)Can random strains induce spin freezing and hence explain the observed spin-freezing transitions in GFAFMs generally?

11 Tetrahedron with Random Strains Spin stiffness: free energy cost of twisting spins at a boundary – analogous to superfluidity order parameter. Spin stiffness: free energy cost of twisting spins at a boundary – analogous to superfluidity order parameter. Pure frustrated system: no stiffness Pure frustrated system: no stiffness Random strains: J → J+δJ ij Random strains: J → J+δJ ij δJ ij ’s induce stiffness δJ ij ’s induce stiffness Stiffness expected to scale as Stiffness expected to scale as Calculate stiffness on single tetrahedron. Calculate stiffness on single tetrahedron. Averaging over disorder Averaging over disorder where A > 0 and it is proportional to |δJ ij | θ

12 Is this spin freezing different from what happens in a conventional spin glass? Conventional spin glasses: δJ ~ J Conventional spin glasses: δJ ~ J Strained GFAFMs: δJ << J Strained GFAFMs: δJ << J Strained GFAFMs: freezing is within ground state manifold of clean system. Strained GFAFMs: freezing is within ground state manifold of clean system. still obeyed. still obeyed. Local strain randomness selects preferred local flux directions. Local strain randomness selects preferred local flux directions.

13 Projection of δJ ij onto Ground State Manifold At low T, can project δJ ij onto the flat bands. At low T, can project δJ ij onto the flat bands. The projection operator, for large r, can be calculated exactly: The projection operator, for large r, can be calculated exactly: P ij (r, r’) = 8π 2 A ij,lm (|r-r’| 2 δ l,m – 3x l x m )/|r-r’| 5 Novel aspect: Long-range – dipolar form for d=3. Novel aspect: Long-range – dipolar form for d=3. In clean system can calculate the eigenvalues of the interaction matrix. In clean system can calculate the eigenvalues of the interaction matrix. Two eigenvalues are k- independent: flat bands. Two eigenvalues are k- independent: flat bands.

14 Monte Carlo Simulations: Heat Capacity MC simulations on pyrochlore with antiferromagnetic Heisenberg spins. MC simulations on pyrochlore with antiferromagnetic Heisenberg spins. δJ ij uniformly distributed in [ –δJ, δJ ] δJ ij uniformly distributed in [ –δJ, δJ ] Heat Capacity without strain per spin: 3/4 k B Heat Capacity without strain per spin: 3/4 k B With strain: (1-1/N)k B With strain: (1-1/N)k B Apparently no singularity in heat capacity with strain: consistent with spin-glass-like transition. Apparently no singularity in heat capacity with strain: consistent with spin-glass-like transition.

15 Heat Capacity

16 Monte Carlo Simulations: Frozen State Measure correlation function Measure correlation function where runs 1 and 2 on same strained lattice but different starting spin configurations. Develops long range order below temperature, T f Develops long range order below temperature, T f T f proportional to δJ T f proportional to δJ The strains are selecting a unique subset of the ground state manifold The strains are selecting a unique subset of the ground state manifold

17 Spin Freezing

18 MC Simulations: Work in Progress Equilibration a problem at low T: At large time, Equilibration a problem at low T: At large time, does not converge to value of.. Next stage: use parallel tempering to cool down system. Next stage: use parallel tempering to cool down system. Qualitative confidence in results but need better cooling regime to get reliable quantitative results. Qualitative confidence in results but need better cooling regime to get reliable quantitative results.

19 Conclusions The high sensitivity of ZnCrO to non-magnetic disorder shows importance of strains and magneto-elastic coupling. The high sensitivity of ZnCrO to non-magnetic disorder shows importance of strains and magneto-elastic coupling. Theoretical work and numerical simulations suggest that strains can cause the spin freezing transition. Theoretical work and numerical simulations suggest that strains can cause the spin freezing transition. Most frustrated systems are found to undergo a freezing transition at low enough temperature – our results are consistent with this. Most frustrated systems are found to undergo a freezing transition at low enough temperature – our results are consistent with this.

20 Figure 8: Scaling of the critical temperature for spin-freezing as a function of disorder magnitude.

21