Astro 10-Lecture 13: Quiz 1. T/F We are near the center of our Galaxy 2.Cepheid variable stars can be used as distance indicators because a) They all have.

Slides:



Advertisements
Similar presentations
The Universe of Galaxies. A Brief History Galileo.
Advertisements

Slide 1 Andromeda galaxy M31Milky Way galaxy similar to M31.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2.
Galaxies Galaxies M81. The Milky Way Galaxy.
The Milky Way Galaxy part 2
© 2010 Pearson Education, Inc. Chapter 20 Galaxies and the Foundation of Modern Cosmology.
Structure of the Universe Astronomy 315 Professor Lee Carkner Lecture 23.
Galaxies and the Foundation of Modern Cosmology. what are the three major types of galaxies? How are galaxies grouped together?
© 2010 Pearson Education, Inc. Chapter 20 Galaxies and the Foundation of Modern Cosmology.
GALAXIES, GALAXIES, GALAXIES! A dime a dozen… just one of a 100,000,000,000! 1.Galaxy Classification Ellipticals Dwarf Ellipticals Spirals Barred Spirals.
9B The Milky Way Our Galactic Home. 9B 9B Goals Structure of our Galaxy. Its size and shape. How do stars and things move through it? Mass and Dark Matter.
Galaxies How big is the Universe? Types of galaxies Elliptical Spiral
Galaxies With a touch of cosmology. Types of Galaxies Spiral Elliptical Irregular.
Chapter 20: Galaxies So far we have talked about “small” things like stars, nebulae and star clusters. Now it’s time to get big!
Chapter 24 Normal and Active Galaxies. The light we receive tonight from the most distant galaxies was emitted long before Earth existed.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Galaxies Chapter 16. Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes and sizes.
Galaxies Chapter 13:. Galaxies Contain a few thousand to tens of billions of stars, Large variety of shapes and sizes Star systems like our Milky Way.
Quasars and Other Active Galaxies
Part 5: The Galaxy and the Universe In this final part of the course, we will: 1. Look at the big spatial picture: Are there organizations of stars? What.
Another galaxy: NGC The Milky Way roughly resembles it.
This is the Local Group of galaxies, about 45 galaxies within about 1 Mpc of the Milky Way. Most are dwarf-elliptical or iregular. A distance of one million.
PHYS 205 Galaxies Where we live: Milkyway Galaxy Orion Arm System of Sol Third Planet.
Copyright © 2010 Pearson Education, Inc. Galaxies Unit 10.
Our goals for learning How did Hubble prove galaxies lie beyond our galaxy? How do we observe the life histories of galaxies? How did galaxies form? Why.
The Milky Way Appears as a band of light stretching across the sky There are dark regions along the band, giving the appearance of a lack of stars This.
Galaxies.
Galaxies Chapter 16. Topics Types of galaxies Dark Matter Distances to galaxies Speed of galaxies Expansion of the universe and Hubble’s law.
© 2010 Pearson Education, Inc. Chapter 20 Galaxies and the Foundation of Modern Cosmology.
Galaxies The Universe is filled with these star systems which themselves cluster together into larger systems.
Galaxies and More Galaxies! It is now believed that there are over 100 billion galaxies, each with an average of 100 billion stars… stars altogether!
1 Galaxies The Andromeda Galaxy - nearest galaxy similar to our own. Only 2 million light years away! Galaxies are clouds of millions to hundreds of billions.
1 Galaxies The Andromeda Galaxy - nearest galaxy similar to our own. Only 2 million light years away! Galaxies are clouds of millions to hundreds of billions.
Galaxies (And a bit about distances). This image shows galaxy M 100 in which the Hubble Space Telescope detected Cepheid variables.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Chapter 16 The Milky Way Galaxy 16.1 Overview n How many stars are in the Milky Way? – About 200 billion n How many galaxies are there? – billions.
The Nature of Galaxies Chapter 17. Other Galaxies External to Milky Way –established by Edwin Hubble –used Cepheid variables to measure distance M31 (Andromeda.
A105 Stars and Galaxies  This week’s units: 74, 75, 76, 78, 79  News Quiz Today  Galaxies homework due Thursday  Projects due Nov. 30 Today’s APODAPOD.
Chapter 20 Galaxies And the Foundation of Modern Cosmology.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 23.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Quasars and Active Galactic Nuclei
Quasars and Other Active Galaxies
“OUR GALAXY” Definition of a Galaxy: a huge group of individual stars, star clusters, dust, and gas bound together by gravity.
(there’s no place like home) The Milky Way Galaxy.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
A Long Time Ago in a Galaxy Far, Far Away…. The Milky Way Galaxy: Home Sweet Home!! Our home Galaxy is called the MILKY WAY (like the candy bar ) Our.
© 2010 Pearson Education, Inc. Galaxies. © 2010 Pearson Education, Inc. Hubble Deep Field Our deepest images of the universe show a great variety of galaxies,
H205 Cosmic Origins  Today: Galaxies (Ch. 20)  Wednesday: Galaxy Evolution (Ch. 21)  EP 4 & Reflection 1 on Wednesday APOD.
The Mass of the Galaxy Can be determined using Kepler’s 3 rd Law –Solar System: the orbital velocities of planets determined by mass of Sun –Galaxy: orbital.
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Chapter 20 Cosmology. Hubble Ultra Deep Field Galaxies and Cosmology A galaxy’s age, its distance, and the age of the universe are all closely related.
Star Groups. Constellations Dividing Up the Sky Constellation one of 88 regions into which the sky has been divided in order to describe the locations.
How fast would a galaxy 2,000 megaparsecs away be moving with respect to us, according to Hubble’s Law? Hint: H0 = 70 km/s/Mpc 1,400 km/s 14,000 km/s 140,000.
© 2017 Pearson Education, Inc.
Chapter 20 Galaxies And the Foundation of Modern Cosmology
© 2017 Pearson Education, Inc.
Objectives Describe how astronomers classify galaxies.
Learning Goals: I will:
The Milky Way Our Galactic Home.
Galaxies.
Galaxies.
Homework: Due at Midnight
Galaxies.
Galaxies Chapter 16.
Galaxies With Active Nuclei
Homework #8 due Thursday, April 12, 11:30 pm.
After Bellwork, Read the FYI on the “Cosmological Distance Ladder” then answer the two questions in your science journal.
Presentation transcript:

Astro 10-Lecture 13: Quiz 1. T/F We are near the center of our Galaxy 2.Cepheid variable stars can be used as distance indicators because a) They all have the same parallax b) They all have the same instrinsic brightness c) The is a relationship between the period of their variability and their luminosity. d)The are all the same size 3.Draw an edge on picture of the galaxy. Label the disk, bulge, globular clusters, and halo. Give the approximate diameter in light-years or parsecs. 4.T/F The brightest stars in our galaxy are found near spiral arms.

Astro 10-Lecture 13: Other Galaxies and the Expanding Universe The “mystery” of the spiral nebulae: How far away are they? How big is the universe?

1920: The Shapley-Curtis Debate Shapley: Our Galaxy is the entire universe. Spiral nebulae are clouds of gas. The sun is not near the center of the Galaxy/Universe, but is in the center of a cluster of stars 50,000 light years from the center. The galaxy is 300,000 light years across. Curtis: Spiral nebulae are galaxies like our own. The sun is near the center of our Galaxy. The galaxy is less than 30,000 light years across.

1920: The Shapley-Curtis Debate The Evidence Shapley: –If spiral nebulae were galaxies the size of our own, then the novae we see associated with them must be 15,000 times brighter than nearby novae. It’s more logical that they are nearby objects (less than 20,000 light years away) with normal novae. –Globular clusters form a sphere 300,000 light years in diameter centered 50,000 light years away from here. So the sun isn’t in the center.

1920: The Shapley-Curtis Debate The Evidence Curtis –In the plane of the galaxy, stars seem to become less common as you get farther away, so the sun is at the center of the galaxy. The stars appear to end about 30,000 light years away. –Stars in globular clusters are faint, so the clusters are closer than Shapley estimates. –The spectrum of a spiral nebula looks like the spectrum of a cluster of stars rather than light emitting gas, so it is logical to assume they are great clusters of stars. –All other nebula types are concentrated near the plane of the Galaxy

Late 1920s: The answer at last Edwin Hubble finds Cepheid Variables in the Andromeda Galaxy (M31) –Distance: 1,000,000 light-years! Both Shapley and Curtis were right on some points and Wrong on others.

Types of Galaxies

Spiral Galaxies Barred Normal

Elliptical Galaxies

Irregular and Peculiar Galaxies

Classification of Galaxies No Star Formation More loosely wound arms Smaller bulge More star formation

ConcepTest T/F: In a galaxy with very little gas and dust you would expect to find many bright blue stars. T/F: A galaxy that contains lots of emission nebulae is likely to have a high rate of star formation.

Properties of Galaxies

Another look at the Virgo Cluster

Interacting Galaxies Click here for simulation

Interacting Galaxies Click here for simulation

Interacting Galaxies Is this how elliptical galaxies form?

cD Galaxies: Cluster Cannibals

How did spiral galaxies form?

Active Galactic Nuclei (AGN) Seyferts and BL Lacs and Quasars, Oh My! –Some are bright in the radio, some in the X-rays, some in the optical. –Some have jets, some are bright points. –Don’t worry too much about the differences, deep down they are very similar...

Active Galactic Nuclei (AGN) Jets

Active Galactic Nuclei (AGN) Radio Lobes

Active Galactic Nuclei (AGN) Bright Blue Nuclei & Emission Line Regions

Active Galactic Nuclei (AGN) Quasars & QSOs (Quasi-Stellar Objects) Before HST

Active Galactic Nuclei (AGN) Quasars & QSOs After HST

So what is an AGN?

How do we figure out properties of galaxies? Size: Measure angular size and use geometry: –R=D sin(  ) (need to know the distance) Luminosity: Measure apparent brightness: –L=4  D 2 B (need to know the distance) Mass: Measure rotational velocity (using Doppler shift) and use Kepler’s Laws – M= v 2 R/G = v 2 D sin(  )/G (need to know the distance)

Rule 1: If we don’t know the distance we don’t know anything. Distance: Cepheid variables: Measure the period to determine luminosity. From luminosity we can calculate distance –Only works for nearby galaxies. –Cepheids are calibrated to parallax of nearest Cepheids.

Concept Test Suppose the nearest Cepheids were farther than we had previously thought. What effect would that have on the luminosity we calculate for galaxies. –If they are farther, they must be more luminous than we thought –If Cepheids are more luminous that we thought, then the ones we see in other galaxies must be farther away than we thought. –If other galaxies are farther away, they must be more luminous than we thought.

How do we get the distances to farther galaxies? The distance ladder: 1. Measure parallax to nearby stars. 2. Use measured parallax to calculate the luminosity of Cepheid variables 3. Use luminosity of Cepheid variables to calculate other “standard candles”

“Standard Candles” A type of object for which we think all objects of that type have the same luminosity Cepheid Variables (works out to 30 Mpc) Luminosity of brightest globular cluster around a galaxy. Luminosity of brightest planetary nebula Luminosity of Type I supernovae. (Brighter than some galaxies) All of these methods are based upon the Cepheid calibration!

Type Ia Supernovae Different from the Type II (death of a massive star)... In Type Ia, a white dwarf is pushed over the 1.4 Solar Mass limit for a white dwarf. Every one is a nearly identical explosion of a 1.4 solar mass white dwarf.

Now that we know the distance we can determine size,luminosity, mass, Biggest surprise comes from the mass calculation: There’s more mass than you would expect given the amount of light. DARK MATTER

Dark Matter: Clusters of Galaxies “Dark Matter” also shows up in clusters of galaxies. –Velocities of galaxies in clusters are higher than the escape velocity you would calculate from the visible matter. –Hot X-ray emitting gas would escape from the clusters without extra mass to hold it in

Dark Matter: Gravitational Lensing The lensing we see requires far more mass than is visible in the clusters. We’ll talk more about this next week.

The Expanding Universe In the 20s and 30s, Edwin Hubble noticed that emission lines in the spectra of spiral nebulae were consistently red shifted. –The smaller the angular size of the nebula, the greater the red shift. –Once he measured the distance to Andromeda, he was able to express a relationship between the measured velocity and the distance. V=H 0 d Added benefit, v is much easier to measure than d

Cosmological Red Shift

The Expanding Universe

What’s the deal? Are we in a special place in the universe? Why else would everything be moving away from us?

The Expanding Universe

What does it mean? In the distant past, every galaxy we can see was in one place. All matter and energy was essentially in the same place. THE BIG BANG (more about this next week, too)

Galaxy Evolution Remember that when we look into the distance we’re also looking into the past, one year ago per light year distant. We see the Andromeda Galaxy as it was more than million years ago. More distant galaxies we see longer ago.

Hubble Deep Field 1/4,000,000th of the entire sky

What do we see? In the past, AGN were more common. –It’s likely that most have run out of fuel Spiral were somewhat more common. –Less had been cannibalized Peculiarly shaped blue galaxies were more common. – The collisions that form ellipticals in progress?