Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.

Slides:



Advertisements
Similar presentations
Collective oscillations of SN neutrinos :: A three-flavor course :: Amol Dighe Tata Institute of Fundamental Research, Mumbai Melbourne Neutrino Theory.
Advertisements

Standard Solar Model Calculation of Neutrino Fluxes Aldo Serenelli Institute for Advanced Study NOW 2006 Conca Specchiulla 11-Sept-2006.
Neutrino oscillations/mixing
George M. Fuller Department of Physics & Center for Astrophysics and Space Science University of California, San Diego Supernova Physics and DUSEL UCLA/UCSD.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany TAUP 2007, September 2007, Sendai, Japan Collective Flavor Oscillations Georg Raffelt,
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Collective Supernova Neutrino Oscillations.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
Georg Raffelt, MPI Physics, Munich Neutrinos at the Forefront, Univ. de Lyon, 22–24 Oct 2012 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
Physics Opportunities with
Neutrino oscillations and non- standard neutrino-matter interactions (NSI) Cecilia Lunardini INT & UW department of Physics, Seattle A.Friedland, C.L.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Instabilities and speeded-up flavor equilibration in neutrino clouds Ray Sawyer UCSB.
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
November 19, 2005 Sergio Palomares-Ruiz Physics of Atmospheric Neutrinos: Perspectives for the Future Topical Workshop on Physics at Henderson DUSEL Fort.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
Melbourne Neutrino Theory Workshop, June ROLE OF DENSE MATTER IN COLLECTIVE NEUTRINO TRANSFORMATIONS Sergio Pastor (IFIC Valencia) in collaboration.
Neutrino Oscillations Or how we know most of what we know.
Neutrino Physics - Lecture 3 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Georg Raffelt, MPI Physics, Munich Neutrino Astrophysics and Fundamental Properties, INT, Seattle, June 2015 Crab Nebula Neutrino Flavor Conversion in.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
Daniele Montanino Università degli Studi di Lecce & Sezione INFN, Via Arnesano, 73100, Lecce, Italy Analytic Treatment of.
Weak Interactions and Supernova Collapse Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Erice, September 21,
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
Cristina VOLPE (Institut de Physique Nucléaire Orsay, France) Challenges in neutrino (astro)physics.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
Constraining Neutrino Mass Hierarchy and θ 13 with Supernova Neutrino Data Stan Yen SNOLAB EAC August 2009.
CP violation in the neutrino sector Lecture 3: Matter effects in neutrino oscillations, extrinsic CP violation Walter Winter Nikhef, Amsterdam,
Tests of non-standard neutrino interactions (NSI) Cecilia Lunardini Institute for Nuclear Theory University of Washington, Seattle.
K S Cheng Department of Physics University of Hong Kong Collaborators: W.M. Suen (Wash. U) Lap-Ming Lin (CUHK) T.Harko & R. Tian (HKU)
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
S.P.Mikheyev (INR RAS) S.P.Mikheyev (INR RAS)2  Introduction.  Vacuum oscillations.  Oscillations in matter.  Adiabatic conversion.  Graphical.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Selected Topics in Astrophysics
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Matter Effects on Neutrino Oscillations By G.-L. Lin NCTU Nov. 20, 04 AS.
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Neutrino Studies at the Spallation Neutron Source, ORNL, 8/29/03W.R. Hix (UTenn./ORNL) Neutrino-Nucleus Interactions and the Core Collapse Supernova Mechanism.
元素合成元素合成 と ニュトリ ノ Nucleosynthesis and Neutrinos A.B. Balantekin.
Cristina VOLPE (AstroParticule et Cosmologie -APC) Open issues in neutrino flavor conversion in media.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Waseda univ. Yamada lab. D1 Chinami Kato
n Recent advances in neutrino (astro)physics Cristina VOLPE
Projjwal Banerjee (UC Berkeley) with
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
SOLAR ATMOSPHERE NEUTRINOS
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Understanding Earth Matter Effect in Neutrino Oscillation
neutrino flavor conversion in media
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
Gravitational SIGNATURE of Core-Collapse Supernovae
SOLAR ATMOSPHERE NEUTRINOS
(Institut de Physique Nucléaire Orsay, France)
Neutrinos and the deaths of Massive Stars
The neutrino mass hierarchy and supernova n
Feasibility of geochemical galactic neutrino flux measurement
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Presentation transcript:

Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and H.T. Janka, arXiv: , in press at PRD

A “petite” supernova: ONeMg Small progenitor: 8-10 M sun Up to 20% of all SNe! –Next galactic SN? Sharp density step at base of He shell He shellONeMg core Plot from Janka, Marek, Kitaura,JankaMarekKitaura AIP Conf.Proc.937: ,2007 Poelarends et al., arXiv: K. Nomoto, Astrophys. J. 277, 791–805 (1984).

Easier explosion –Little resistance from envelope Faster shockwave Kitaura, Janka, Hillebrandt, Astron. Astrophys. 450 (2006) 34 5 ONeMg, 8.8 M sun Fe, 15 M sun shock Buras, Rampp, Janka, Kifonidis, Astron. Astrophys. 447, 1049 (2006)

The simulation Calculates time-evolved density profile and neutrino flux Uses 8.8 M sun progenitor model from K. Nomoto Spherical symmetry PROMETHEUS/VERTEX code –variable Eddington factor solver for the neutrino transport –state-of-the-art treatment of neutrino-matter interactions. Particular effort was made to implement nuclear burning and electron capture rates with sufficient accuracy to ensure a smooth continuation, without transients, from the progenitor evolution to core collapse. K. Nomoto, Astrophys. J. 277, 791–805 (1984).

Electron number density, n e : –relativistic speed of shock t=0,50,100,….,700 ms 0 ms 100 ms 250 ms 700 ms post-shock pre-shock

Hierarchy of average energies –Oscillation effects  spectrum permutation

Oscillations: masses and mixings Normal hierarchy,  m 2 32 >0 Inverted hierarchy,  m 2 32 <0 Sin 2 2  13 <0.15 CHOOZ, PLB466, 1999 m

In medium: frequencies Kinetic: Forward scattering (refraction) –on electrons n e electron number density –On neutrinos (“self interaction”) N number density, R decoupling radius

Rule of thumb: scattering terms are relevant only if larger than kinetic:  e ¸  ji  ¸  ji  ¸  ji  non-linear, collective effects –indirect dependence on matter profile  e ~  ji  MSW resonance –Strong dependence on matter profile (n e ) Mikheev, Smirnov, Wolfenstein (1985,1978) Duan, Fuller, Carlson and Qian, Phys. Rev.D 74, (20 06)

Post-shock (t>300 ms)  decouples first: effects factorize t=0,50,100,….,700 ms  /(2 1/2 G F ) = n eff  e /(2 1/2 G F ) = n e  31 /(2 1/2 G F )  21 /(2 1/2 G F ) “Supernova” resonance,  13 “solar” resonance End of self- interaction effects

Self interaction effects Effects of  are negligible if:  Hierarchy is normal (  m 2 31 >0)  They decouple before the MSW resonance (  e ~  2  >>  )   13 is small Reduction to MSW resonances only! Hannestad, Raffelt, Sigl and Wong, Phys.Rev.D74:105010,2006 Raffelt and Smirnov, Phys.Rev.D76:081301,2007 Fogli, Lisi, Marrone and Mirizzi, arXiv:

MSW: P H, P L as switches Eigenvalues PHPH PLPL e conversion Final e survival 01 e    3 ~0 00 e    3 ~0 10 e    2 sin 2  12 ~ e    1 cos 2  12 ~ 0.68 x = ,  Dighe and Smirnov, Phys.Rev.D62:033007,2000

Transition probability Depends on density profile: Steeper profile, smaller mixing  more transition (non-adiabatic, less conversion) P H 1 PHPH  13 ! 0 dn e /dr ! 1

Pre-shock All frequencies relevant: numerical approach t=0,50,100,….,700 ms  /(2 1/2 G F ) = n eff  e /(2 1/2 G F ) = n e  31 /(2 1/2 G F )  21 /(2 1/2 G F )  e ~  ~  31 Duan, et al. arXiv: , Dasgupta et al., arXiv: , analytical interpretation

MSW-equations still valid with effective, step- like P H,P L –P L =  (E-12 MeV) –P H =  (E-15 MeV) p=cos 2  12 ~ 0.68 at E >15 MeV –Valid for any  13 P( e  1 ) P( e  2 ) P( e  3 ) sin 2  13 =0.01 Duan, Fuller, Carlson, and Qian, arXiv: Duan, private comm. P L =0P L =1 P H =0P H =1

Oscillations in the Earth e flux in a Earth-shielded detector: Production point Conversion in star Regeneration in Earth: P( 2 ! e )-sin 2  12 =+ C.L. & A.Yu. Smirnov, Nucl.Phys.B616: ,2001

What to expect: ONeMg: early (~1 s) increase of conversion (profile becomes smoother) ONeMg

Fe: late (~5 s) decrease of conversion (profile becomes steeper due to shock) Fe Schirato & Fuller, astro-ph/

Intermediate: Slow (three steps) decreas e Small: No decreas e Large: Fast decreas e Fe supernova t=60 m s t=450 ms t=700 ms Results: jumping probabilites E=20 MeV sin 2  13

P L (20 MeV) = 1 pre-shock 0 post-shock Fe SN: P L =0 at all times

e survival probability: fast, slower, slowest.. sin 2  13 =10 -2 sin 2  13 =10 -5 sin 2  13 = Fe-core SN

Earth effect: fast.. Fe SN: no effect t=60 m s t=700 m s t=450 m s (F D e -F e )/F e

..slower.. Fe SN: no effect

..slowest Fe SN: opposite sign at 60 ms, similar effect later

Observed spectra ONeMgFe t=60 m s t=700 m s t=450 m s

ONeMg vs Fe: differences ONeMgFe Pre-shock: ~68% e survival <32% e survival shock modulations before 1 s (faster for larger  13 ) Shock modulations only after 3-5 s Shock  progressive decrease of survival probability Shock  sudden increase of survival probability Shock  disappearance of Earth effect Shock  appearance of Earth effect

Why important? Unique way to test the density step (O-He transition) –Tomography! Provide progenitor identification (ONeMg or Fe) for obscured SNe Necessary to interpret data from a ONeMg SN –Test collapse models, neutrino emission, etc. –learn on  13, hierarchy, exotica, …