Beyond delta-N formalism Atsushi Naruko Yukawa Institute Theoretical Physics, Kyoto In collaboration with Yuichi Takamizu (Waseda) and Misao Sasaki (YITP)

Slides:



Advertisements
Similar presentations
Holographic Superconductors with Higher Curvature Corrections Sugumi Kanno (Durham) work w/ Ruth Gregory (Durham) Jiro Soda (Kyoto) arXiv: , to.
Advertisements

Non-Gaussianity of superhorizon curvature perturbations beyond δN-formalism Resceu, University of Tokyo Yuichi Takamizu Collaborator: Shinji Mukohyama.
Gradient expansion approach to multi-field inflation Dept. of Physics, Waseda University Yuichi Takamizu 29 th JGRG21 Collaborators: S.Mukohyama.
Beyond δN-formalism for a single scalar field Resceu, University of Tokyo Yuichi Takamizu 27th Collaborator: Shinji Mukohyama (IPMU,U.
Temporal enhancement of super-horizon scale curvature perturbations from decays of two curvatons and its cosmological implications. Teruaki Suyama (Research.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
Improved constrained scheme for the Einstein equations: an approach to the uniqueness issue in collaboration with Pablo Cerdá-Durán Harald Dimmelmeier.
Evolutionary effects in one-bubble open inflation for string landscape Daisuke YAMAUCHI Yukawa Institute for Theoretical Physics,
Gravitational Radiation from Symmetry Breaking Kate Jones-Smith Harsh Mathur, Lawrence Krauss CWRU BCCS Workshop December
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
Cosmological Structure Formation A Short Course
Oct Quantization of Inflation Models Shih-Hung (Holden) Chen Collaborate with James Dent.
Cosmic Microwave Radiation Anisotropies in brane worlds K. Koyama astro-ph/ K. Koyama PRD (2002) Kazuya Koyama Tokyo University.
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, MK, JHEP 07 (2008) Dimopoulos, MK, Lyth, Rodriguez,
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, Karčiauskas, JHEP 07, 119 (2008) Dimopoulos,
Jason Dekdebrun Theoretical Physics Institute, UvA Advised by Kostas Skenderis TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Non-Gaussianities of Single Field Inflation with Non-minimal Coupling Taotao Qiu Based on paper: arXiv: [Hep-th] (collaborated with.
Based on Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016 Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
HOLOGRAPHY, DIFFEOMORHISMS, AND THE CMB Finn Larsen University of Michigan Quantum Black Holes at OSU Ohio Center for Theoretical Science September
Construction of gauge-invariant variables for linear-order metric perturbations on general background spacetime Kouji Nakamura (NAOJ) References : K.N.
Effective field theory approach to modified gravity with applications to inflation and dark energy Shinji Tsujikawa Hot Topics in General Relativity And.
2次ゲージ不変摂動論定式化の進行状況 Kouji Nakamura (Grad. Univ. Adv. Stud. (NAOJ)) References : K.N. Prog. Theor. Phys., vol.110 (2003), 723. (gr-qc/ ). K.N. Prog.
Cosmological Post-Newtonian Approximation with Dark Energy J. Hwang and H. Noh
Yoshiharu Tanaka (YITP) Gradient expansion approach to nonlinear superhorizon perturbations Finnish-Japanese Workshop on Particle Helsinki,
Self – accelerating universe from nonlinear massive gravity Chunshan Lin Kavli
1 Multi-field Open Inflation & Instanton YITP, Kyoto University Kazuyuki Sugimura (Collaborator : D. Yamauchi and M. Sasaki)
Black hole production in preheating Teruaki Suyama (Kyoto University) Takahiro Tanaka (Kyoto University) Bruce Bassett (ICG, University of Portsmouth)
Emergent Universe Scenario
BRANEWORLD COSMOLOGICAL PERTURBATIONS
Conservation of the non-linear curvature perturbation in generic single-field inflation Yukawa Institute for Theoretical Physics Atsushi Naruko In Collaboration.
Thursday, 13 th of September of 2012 Strong scale dependent bispectrum in the Starobinsky model of inflation Frederico Arroja 이화여자대학교 EWHA WOMANS UNIVERSITY.
21 st of March of 2011 On the role of the boundary terms for the non-Gaussianity Frederico Arroja 이화여자대학교 EWHA WOMANS UNIVERSITY FA and Takahiro Tanaka,
1 Circular Polarization of Gravitational Waves in String Cosmology MIAMI, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
The anisotropic inflation and its imprints on the CMB Kyoto University Masaaki WATANABE Ref: MW, Sugumi Kanno, and Jiro Soda [1] 2009, arXiv:
Influence on observation from IR / UV divergence during inflation Yuko Urakawa (Waseda univ.) Y.U. and Takahiro Tanaka [hep-th] Y.U. and Takahiro.
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
Yukawa Institute for Theoretical Physics Kyoto University Misao Sasaki Relativity & Gravitation 100 yrs after Einstein in Prague 26 June 2012.
Nonlinear perturbations for cosmological scalar fields Filippo Vernizzi ICTP, Trieste Finnish-Japanese Workshop on Particle Cosmology Helsinki, March 09,
Non-Gaussianity, spectral index and tensor modes in mixed inflaton and curvaton models Teruaki Suyama (Institute for Cosmic Ray Research) In collaboration.
Takahiro Tanaka (YITP, Kyoto univ.) in collaboration with Yuko Urakawa (Barcelona univ.) arXiv:1208.XXXX PTP125:1067 arXiv: , Phys.Rev.D82:
Brane Gravity and Cosmological Constant Tetsuya Shiromizu Tokyo Institute of Technology Tokyo Institute of Technology 白水 White Water.
Cosmological Perturbations in the brane worlds Kazuya Koyama Tokyo University JSPS PD fellow.
 N formalism for Superhorizon Perturbations and its Nonlinear Extension Misao Sasaki YITP, Kyoto University Based on MS & E.D. Stewart, PTP95(1996)71.
  N formalism for curvature perturbations from inflation Yukawa Institute (YITP) Kyoto University Kyoto University Misao Sasaki DESY 27/09/2006.
Inflationary Theory of Primordial Cosmological Perturbation Project for General Relativity (Instructor: Prof.Whiting) Sohyun Park.
Primordial non-Gaussianity from inflation Christian Byrnes Institute of Cosmology and Gravitation University of Portsmouth Work with David Wands, Kazuya.
Construction of gauge-invariant variables for linear-order metric perturbation on general background spacetime Kouji Nakamura (NAOJ) References : K.N.
Scalar perturbations in braneworld cosmology Takashi Hiramatsu Research Center for the Early Universe (RESCEU), School of Science, University of Tokyo.
Unesco July 2005Francis Bernardeau SPhT Saclay1 Models of inflation with primordial non-Gaussianities Francis Bernardeau SPhT Saclay Collaboration with.
1 S olution to the IR divergence problem of interacting inflaton field Y uko U rakawa (Waseda univ.) in collaboration with T akahiro T anaka ( Kyoto univ.)
Three theoretical issues in physical cosmology I. Nonlinear clustering II. Dark matter III. Dark energy J. Hwang (KNU), H. Noh (KASI)
Quantum Noises and the Large Scale Structure Wo-Lung Lee Physics Department, National Taiwan Normal University Physics Department, National Taiwan Normal.
Gravitational Self-force on a Particle in the Schwarzschild background Hiroyuki Nakano (Osaka City) Norichika Sago (Osaka) Wataru Hikida (Kyoto, YITP)
1 Yasushi Mino ( 蓑 泰 志 ) WUGRAV, Washington University at St. Louis Index 1: Introduction 2: Self-force in a Linear Perturbation.
Inflation in modified gravitational theories Shinji Tsujikawa Tokyo University of Science (TUS) with Antonio De Felice (TUS), Joseph Elliston, Reza Tavakol.
Nonlinear curvature perturbations in two-field hybrid inflation Yukawa Institute (YITP) Kyoto University Misao Sasaki --  N in exactly soluble models.
IRGAC Cosmological perturbations in stochastic gravity Yuko Urakawa with Kei-ichi Maeda.
1 Loop corrections to the primordial perturbations Yuko Urakawa (Waseda university) Kei-ichi Maeda (Waseda university)
Numerical Relativity in Cosmology - my personal perspective - Yoo, Chulmoon ( Nagoya U. ) with Hirotada Okawa ( Lisbon, IST ) New Perspectives on Cosmology.
Fully nonlinear cosmological perturbation formulation and its applications J. Hwang & H. Noh 51 st Recontres de Moriond March 19-26, 2016 La Thuile, Italy.
Teruaki Suyama Black hole perturbation in modified gravity Research Center for the Early Universe, University of Tokyo 公募研究 ( 計画研究 A05) 「強い重力場での修正重力理論の検証に向けた理論的研究」
Spherical Collapse and the Mass Function – Chameleon Dark Energy Stephen Appleby, APCTP-TUS dark energy workshop 5 th June, 2014 M. Kopp, S.A.A, I. Achitouv,
N formalism for curvature perturbations from inflation
A rotating hairy BH in AdS_3
in collaboration with M. Bojowald, G. Hossain, S. Shankaranarayanan
Quantum Spacetime and Cosmic Inflation
Nonlinear cosmological perturbations
Presentation transcript:

Beyond delta-N formalism Atsushi Naruko Yukawa Institute Theoretical Physics, Kyoto In collaboration with Yuichi Takamizu (Waseda) and Misao Sasaki (YITP)

The contents of my talk 1. Introduction and Motivation 2. Gradient expansion and delta-N formalism 3. Beyond delta-N formalism

Introduction Inflation is one of the most promising candidates as the generation mechanism of primordial fluctuations. We have hundreds or thousands of inflation models. → we have to discriminate those models Non-Gaussianity in CMB will have the key of this puzzle. In order to calculate the NG correctly, we have to go to the second order perturbation theory, but …

Evolution of fluctuation Perturbation theory Gradient expansion Concentrating on the evolution of fluctuations on large scales, we don’t necessarily have to solve complicated pertur. Eq.

Gradient expansion approach In GE, equations are expanded in powers of spatial gradients. → Although it is only applicable to superhorizon evolution, full nonlinear effects are taken into account. Background Eq. lowest order Eq. = Just by solving background equations, we can calculate curvature perturbations and NG in them. : delta-N formalism (difference of e-fold) At the lowest order in GE (neglect all spatial gradients), Don’t we have to care about spatial gradient terms ?

Slow-roll violation If slow-roll violation occured, we cannot neglect gradient terms. Leach, et al (PRD, 2001) Slow-roll violation wave number Power spectrum of curvature pert. Since slow-roll violation may naturally occur in multi-field inflation models, we have to take into account gradient terms more seriously in multi-field case.

Goal Our goal is to give the general formalism for solving the higher order terms in (spatial) gradient expansion, which can be applied to the case of multi-field.

Gradient expansion approach and delta-N formalism

Gradient expansion approach On superhorizon scales, gradient expansion will be valid. We express the metric in ADM form We decompose spatial metric g ij and extrinsic curvature K ij into traceless Ψ 〜 R : curvature perturbation a(t) : fiducial “B.G.” → We expand Equations in powers of spatial gradients : ε

Lowest-order in gradient expansion After expanding Einstein equations, lowest-order equations are background eq. lowest-order eq. → The structure of lowest-order eq is same as that of B.G. eq with identifications, and ! changing t by τ lowest-order sol. background sol.

delta-N formalism We define the non-linear e-folding number and delta-N. Choose slicing such that initial : flat & final : uniform energy delta-N gives the final curvature perturbation flat E E const. Ψ E final E initial

Beyond delta-N formalism

Gradient expansion approach Perturbation theory delta-N Beyond delta-N Gradient expansion

towards “Beyond delta-N” At the next order in gradient expansion, we need to evaluate spatial gradient terms. → we cannot freely choose time coordinate (gauge) !! Since those gradient terms are given by the spatial derivative of lowest-order solutions, we can easily integrate them… Once spatial gradient appeared in equation, we cannot use “τ” as time coordinate which depends on x i because integrable condition is not satisfied.

Beyond delta-N We usually use e-folding number (not t) as time coordinate. → We choose uniform N gauge and use N as time coordinate. Form the gauge transformation δN : uniform N → uniform E, we can evaluate the curvature perturbation. flat E const. lowest order next order

Summary We gave the formalism, “Beyond delta-N formalism”, to calculate spatial gradient terms in gradient expansion. If you have background solutions, you can calculate the correction of “delta-N formalism” with this formalism just by calculating the “delta-N”.

Linear perturbation theory

FLRW universe For simplicity, we focus on single scalar field inflation. Background spacetime : flat FLRW universe Friedmann equation :

Linear perturbation We define the scalar-type perturbation of metric as (0, 0) : (0, i) : trace : traceless :

Linear perturbation : J = 0 We take the comoving gauge = uniform scalar field gauge. Combining four equations, we can derive the master equation. On super horizon scales, R c become constant. and

Einstein equations in J = 0 Original Einstein equations in J = 0 gauge are (0, 0) : (0, i) : trace : traceless :

Linear perturbation : J = 0 In original Einstein equations, where does the decaying mode come from ? → Lapse determines the evolution of R_c (0, i) : (0, 0) : traceless : → Lapse 〜 shear → Shear will decay as a -2 neglecting the RHS. The origin of decaying mode is shear. The effects of spatial gradient appear through shear.

R c = a δφ flat u is the perturbation of scalar field on R = 0 slice. → quantization is done on flat (R = 0) slice. We can quantize the perturbation with → perturbations at horizon crossing which give the initial conditions for ▽ expansion are given by fluctuations on flat slice.

Curvature perturbation ? We parameterised the spatial metric as traceless R : curvature perturbation Strictly speaking, Ψ is not the curvature perturbation. linearlise → On SH scales, E become constant and we can set E = 0. → Ψ can be regarded as curvature perturbation at lowest-order in ▽ expansion. In the linear perturbation, we parametrised the spatial metric as

Shear and curvature perturbation Once we take into account spatial gradient terms, shear (σ g or A ij ) will be sourced by them and evolve. → we have to solve the evolution of E. At the next order in gradient expansion, Ψ is given by “delta-N” like calculation. In addition, we need to evaluate E.

delta-N formalism 1 We define the non-linear e-folding number Curvature perturbation is given by the difference of “N” x i = const. N flat

delta-N formalism 2 Choose slicing such that initial : flat & final : uniform energy delta-N gives the final curvature perturbation flat E const. φ Ψ

Beyond delta-N We usually use e-folding number (not t) as time coordinate. → We choose uniform N slicing and use N as time coordinate. Combining equations, you will get the following equation for φ.

Beyond delta-N 2 We compute “delta N” from the solution of scalar field. flat com. φ =

Beyond delta-N 3 We extend the formalism to multi-field case. As a final slice, we choose uniform E or uniform K slice since we cannot take “comoving slice”. We can compute “delta N” form the solution of E, lowest order

Question How can we calculate the correction of delta-N formalism ?

Answer To calculate the cor. of delta-N, all you have to do is calculate “delta-N”.