ESS End-to-End Optics and Layout Integration Håkan Danared European Spallation Source Catania, 6 July 2011.

Slides:



Advertisements
Similar presentations
Laboratori Nazionali di Legnaro (Italy) DTL design status A. Pisent.
Advertisements

Experience with Bunch Shape Monitors at SNS A. Aleksandrov Spallation Neutron Source, Oak Ridge, USA.
Damping ring K. Ohmi LC Layout Single tunnel Circumference 6.7 km Energy 5 GeV 2 km 35 km.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
ESS DTL beam commissioning
Field and Phase Error Studies in Normal Conducting Structures LLRF and Beam Dynamics in Hadron Linacs – EuCARD2 Workshop Ciprian Plostinar
Beam tolerance to RF faults & consequences on RF specifications Frédéric Bouly MAX 1 st Design Review WP1 - Task 1.2 Bruxelles, Belgium Monday, 12 th November.
RF Distribution Alternatives R.A.Yogi & FREIA group Uppsala University.
Drive Beam Linac Stability Issues Avni AKSOY Ankara University.
ESS Design Options David McGinnis 4 March
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
Dave McGinnis Chief Engineer – Accelerator Division
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
Managing Parameters Karin Rathsman Parameter Management Enforce groups as well as individuals to work towards the same solution Provide tools.
Anders Sunesson RF Group ESS Accelerator Division
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
Alexander Aleksandrov Oak Ridge National Laboratory
R. Miyamoto, Beam Loss and Collimation in the ESS Linac, HB Beam Loss and Collimation in the ESS Linac Ryoichi Miyamoto (ESS) B. Cheymol, H. Danared,
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Project X Injector Experiment (PXIE) Sergei Nagaitsev Dec 19, 2011.
ICFA-HB 2004 Commissioning Experience for the SNS Linac A. Aleksandrov, S. Assadi, I. Campisi, P. Chu, S. Cousineau, V. Danilov, G. Dodson, J. Galambos,
Beam Dynamics in the ESS Linac Under the Influence of Monopole and Dipole HOMs A.Farricker 1, R.M.Jones 1, R.Ainsworth 2 and S.Molloy 3 1 The University.
Cold versus Warm, parameters impacting LC reliability and efficiency contribution to the discussion on risk factors Giorgio Bellettini, Seul ITRP meeting,
Aaron Farricker 107/07/2014Aaron Farricker Beam Dynamics in the ESS Linac Under the Influence of Monopole and Dipole HOMs.
Module 5 A quick overview of beam dynamics in linear accelerators
Comparison of Fermilab Proton Driver to Suggested Energy Amplifier Linac Bob Webber April 13, 2007.
The International Workshop on Thin Films. Padova 9-12 Oct of slides Present Status of the World- wide Fusion Programme and possible applications.
A.Saini, K.Ranjan, N.Solyak, S.Mishra, V.Yakovlev on the behalf of our team Feb. 8, 2011 Study of failure effects of elements in beam transport line &
Warm linac simulations (DTL) and errors analysis M. Comunian F. Grespan.
R. Miyamoto, MEBT Lattice Optimization, ESS AD Beam Physics Internal Review 1 MEBT Lattice Optimization Ryoichi Miyamoto (ESS) For Beam Physics Group,
Overview of long pulse experiments at NML Nikolay Solyak PXIE Program Review January 16-17, PXIE Review, N.Solyak E.Harms, S. Nagaitsev, B. Chase,
Linac4 DTL Beam Dynamics 1Jean-Baptiste Lallement – Mini-workshop on DTL design - 13/09/2011 Mini-workshop on DTL design – 13 September 2011 JB Lallement,
Project X High Power 325 MHz RF Distribution and Control Alfred Moretti, Nov 12, 2007 Project X Workshop.
Aaron Farricker 107/07/2014Aaron Farricker Beam Dynamics in the ESS Linac Under the Influence of Monopole and Dipole HOMs.
Neutrino Factory by Zunbeltz, Davide, Margarita, Wolfgang IDS proposal.
CW Linac Lattice August, 29 N.Solyak, B.Shteynas.
M. Munoz April 2, 2014 Beam Commissioning at ESS.
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
Welcome to the RFQ Meeting
The LEP Superconducting RF system has reached its maximum configuration of 288 four-cell cavities powered by 36 klystrons in In 2000, this system,
Present and possible future schemes for hadron therapy linacs Alberto Degiovanni for the ADAM team HG2017 Workshop , Valencia.
WP5 Elliptical cavities
General Design of C-ADS Accelerator Physics
Linac4 Beam Characteristics
Physics design on the main linac
Overview and System Design for ESS LLRF Systems
Progress in the Multi-Ion Injector Linac Design
Physics design on Injector-1 RFQ
Emanuele (ESS), Alessandro (CERN), Mikel (Tekniker), Hayley (ISIS)
Challenges and Perspectives of Accelerator Driven Systems (ADS)
Part2: Cavities and Structures
1- Short pulse neutron source
EffiCAS Efficient Facility for Ions at CAS
Implications of HOMs on Beam Dynamics at ESS
LHC (SSC) Byung Yunn CASA.
Pulsed Ion Linac for EIC
Advanced Research Electron Accelerator Laboratory
Part2: Cavities and Structures
Managing Parameters Karin Rathsman
MEBT1&2 design study for C-ADS
Physics Design on Injector I
Challenges, Progress and Plans of SRF CH-Structures
DTL M. Comunian M. Eshraqi.
RF introduction Anders Sunesson RF group leader
Status of the JLEIC Injector Linac Design
DTL for MEIC Ion Injection
Parameters Changed in New MEIC Design
Multi-Ion Injector Linac Design – Progress Summary
RF system for MEIC Ion Linac: SRF and Warm Options
Presentation transcript:

ESS End-to-End Optics and Layout Integration Håkan Danared European Spallation Source Catania, 6 July 2011

2

E22 Odarslövsvägen

Energy2.5 GeV Current50 mA Average power5 MW Pulse length2.86 ms (new value since April 2011, equal to 2×20/14) Rep rate14 Hz (new value since April 2011) Length392 m, plus HEBT Max cavity field40 MV/m Longer than previously because of ”hybrid design”, smoother longitudinal phase advance, lower field gradients,... Present Geometry and Top-Level Parameters

Optimization of Linac Length Length of superconducting linac is 363 m in the HS_2011_06_22 layout, which is the currently favoured “smooth hybrid”. Total length from ion source to vertical bend, i.e. including HEBT/upgrade, is 492 m. All calculations for superconducting linac made by Mamad Eshraqi. Hybrid between fully segmented and cryo-string gives high serviceability, low cryo load, is good for instrumentation... HS_2011_06_22

Beam Envelope and Emittance Growth in Superconducting Linac (HS_2011_06_22) Envelope horizontal Envelope vertical Envelope long. (Δφ at 352 MHz) Emittance growth horizontal Emittance growth vertical Emittance growth longitudinal

Beam Density, Hofmann Plot (HS_2011_06_22) RFQ (A. Ponton)Spokes, Ellipticals

Accelerating Gradients (HS_2011_06_22) Ratio of peak surface field to accelerating field taken from fit to experimental data [P. Pierini], peak surface field chosen to be 40 MV/m. Is this the optimal value? Accelerating gradient (MV/m) in superconducting linac, for smooth and stepwise longitudinal phase advance. Cavity power (kW) in superconducting linac, for smooth and stepwise longitudinal phase advance (specification for power couplers now 900 kW).

Tolerance against Cavity Failure (HS_2011_06_22) Failure of one cavity, or klystron, in the spokes section (most sensitive section) can be handled with maximum about 25% transverse and 12% longitudinal emittance growth. Failure of two adjacent cavities cannot be compensated without large emittance growth and beam loss. Transverse emittance increase due to a failed cavity where energy gain is largest (green bar above) is approximately 12%. It is expected that the elliptical sections are less sensitive to cavity failure than the spokes section.

Effects of RF amplitude and phase errors (HS_2011_06_22) First study of tolerance to RF amplitude and phase errors. Results of 100 sets of ”random” coupled amplitude and phase offsets up to 3% and 3°. Effects start to be seen on emittances and energy and phase deviations at errors between 0.5 and 1.0 %,°. More statistics is needed and more kinds of errors must be included, like alignment errors, magnetic-field variations, multipole fields, current and emittance variations. Essential figures of merit include beam trans- mission (absence of particle losses) and beam stability on target.

Energy2.5 GeV Current50 mA Average power5 MW Pulse length2.86 ms Rep rate14 Hz Length392 m, plus HEBT Max surface field ellipticals40 MV/m Frequencies352.21, MHz Current/Optimal Linac Parameters Ion source output75 keV RFQ output3 MeV DTL output50 MeV Spokes output188 MeV Low-beta output606 MeV High-beta output2500 MeV Gaps per spoke cavity3 Cells per low-beta cavity5 Cells per high-beta cavity5 Cavities per spoke module2 Cavities per low-beta module4 Cavities per high-beta module8 No. of spoke modules14 No. of low-beta modules16 No. of high-beta modules15 Geometric beta spokes0.57 Geometric beta low-beta0.70 Geometric beta high-beta0.90 Accelerating field spokes8 MV/m Max surface field ellipticals40 MV/m Max power per coupler900 kW Optimization criterionlinac length “Phase laws”... Mechanical dimensions... Chopper(s)/time structure... Collimators... Upgradability...

Energy2.5 GeV Current50 mA Average power5 MW Pulse length2.86 ms Rep rate14 Hz Length392 m, plus HEBT Max surface field ellipticals40 MV/m Frequencies352.21, MHz Current/Optimal Linac Parameters Ion source output75 keV RFQ output3 MeV DTL output50 MeV Spokes output188 (202) [245] MeV Low-beta output606 (524) [589] MeV High-beta output2500 MeV Gaps per spoke cavity3 Cells per low-beta cavity5 Cells per high-beta cavity5 Cavities per spoke module2 (3) [3] Cavities per low-beta module4 (3) [4] Cavities per high-beta module8 (6) [8] No. of spoke modules14 (13) [15] No. of low-beta modules16 (11) [10] No. of high-beta modules15 (19) [14] Geometric beta spokes0.57 (0.53) [0.54] Geometric beta low-beta0.70 (0.65) [0.67] Geometric beta high-beta0.90 (0.86) [0.84] Accelerating field spokes8 (8.3) [8.3] MV/m Max surface field ellipticals40 (50) [50] MV/m Max power per coupler900 kW Optimization criterionlinac length “Phase laws”... Mechanical dimensions... Chopper(s)/time structure... Collimators... Upgradability...

Parameter Tables

Lattice and Accelerator Science

Integration MEBT meeting, 4 May, Bilbao Warm-linac meeting, 6 July, Catania End-to-end beam-dynamics workshop, 31 Oct – 1 Nov, Lund Integration of entire linac lattice end of 2011, gives emittance table, aperture requirements,... FODO DTL, M. Comunian Source emittance, R. Miracoli ESS RFQ, A. Ponton SC Linac, M. Eshraqi HEBT, A. Holm / H. Thomsen Target footprint, H.D.