70 YEARS OF FISSION Kazimierz 2008 Comment on a frequent error in calculations of the n / f ratio W.J. Świątecki, J. Wilczyński and K. S-W.

Slides:



Advertisements
Similar presentations
EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
Advertisements

C) between 18 and 27. D) between 27 and 50.
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Fill in missing numbers or operations
Systematic study of fusion reactions leading to super-heavy nuclei Ning Wang ( ) Guangxi Normal University Workshop on Synthesis.
Systematics of fusion probability in reactions leading to super-heavy nuclei Ning Wang ( ) Guangxi Normal University Dec., Beijing.
Systematic study of fusion reactions leading to super-heavy nuclei
Advanced Piloting Cruise Plot.
1 Workshop Espace de Structure Nucléaire Théorique / April, 2010 Olivier SEROT Commissariat à lEnergie Atomique – Centre de Cadarache Direction pour.
Kapitel 21 Astronomie Autor: Bennett et al. Galaxienentwicklung Kapitel 21 Galaxienentwicklung © Pearson Studium 2010 Folie: 1.
Slide 1Fig. 17.1, p.513 Active Figure Slide 2Table 17.1, p.514.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Performance of Hedges & Long Futures Positions in CBOT Corn Goodland, Kansas March 2, 2009 Daniel OBrien, Extension Ag Economist K-State Research and Extension.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
CALENDAR.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
0 - 0.
ALGEBRAIC EXPRESSIONS
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 10 second questions
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Grade D Number - Decimals – x x x x x – (3.6 1x 5) 9.
The 5S numbers game..
Richmond House, Liverpool (1) 26 th January 2004.
Stationary Time Series
ABC Technology Project
Mental Math Math Team Skills Test 20-Question Sample.
EU Market Situation for Eggs and Poultry Management Committee 21 June 2012.
© Charles van Marrewijk, An Introduction to Geographical Economics Brakman, Garretsen, and Van Marrewijk.
VOORBLAD.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Squares and Square Root WALK. Solve each problem REVIEW:
© 2012 National Heart Foundation of Australia. Slide 2.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Before Between After.
Addition 1’s to 20.
25 seconds left…...
Subtraction: Adding UP
Januar MDMDFSSMDMDFSSS
Week 1.
We will resume in: 25 Minutes.
Static Equilibrium; Elasticity and Fracture
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
PSSA Preparation.
Immunobiology: The Immune System in Health & Disease Sixth Edition
How Cells Obtain Energy from Food
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
1 Role of the nuclear shell structure and orientation angles of deformed reactants in complete fusion Joint Institute for Nuclear Research Flerov Laboratory.
Role of mass asymmetry in fusion of super-heavy nuclei
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Study on Sub-barrier Fusion Reactions and Synthesis of Superheavy Elements Based on Transport Theory Zhao-Qing Feng Institute of Modern Physics, CAS.
Presentation transcript:

70 YEARS OF FISSION Kazimierz 2008 Comment on a frequent error in calculations of the n / f ratio W.J. Świątecki, J. Wilczyński and K. S-W

1. G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys. A678, 24 (2000) 2. A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. Ivanova, and W.Scheid, Phys. Rev. C 68, (2003). 3. G. G. Adamian, N. V. Antonenko, S.P. Ivanova, and W. Scheid, Phys. Rev. C 62, (2000). 4. A. S. Zubov, G. G. Adamian, N. Antonenko, S. Ivanova, and W. Scheid, Phys. Rev. C 65, (2002). 5. G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 69, (2004) 6. G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 69, (2004) 7. G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 69, (2004). 8. Z.-Q. Feng, G.-M. Jin, J.-Q. Li, and W. Scheid, Phys. Rev. C 76, (2007). 9. Z.-Q. Feng, G.-M. Jin, F. Fu, and J.-Q. Li, Nucl. Phys. A771, 50 (2006). 10. Z. H. Liu and Jing-Dong Bao, Phys. Rev. C 76, (2007). 11. V. I. Zagrebaev, Phys. Rev. C 64, (2001). 12. Yu. Ts. Oganessian et al., Phys. Rev. C 64, (2001). 13. V. I. Zagrebaev, Y. Aritomo, M. G. Itkis, Yu. Ts. Oganessian, M. Ohta, Phys. Rev. C 65, (2002). 14. M. G. Itkis, Yu. Ts. Oganessian, and V. I. Zagrebaev, Phys. Rev. C65, (2002). 15. V. I. Zagrebaev, Nucl. Phys. A734, 164 (2004) 16. R. N. Sagaidak, V. I. Chepigin, A. Kabachenko, J. Rohac, Yu.Ts. Oganessian, A. G. Popeko, A. V. Yeromin, A. D'Arrigo, G.Fazzio, G. Giardina, M. Herman, R. Ruggieri, and R. Sturiale, J.Phys. G 24, 611 (1998). 17. G. Fazio, G. Giardina, A. Lamberto, A. I. Muminov, A. K. Nasirov, F. Hanappe, and L. Stuttge, Eur. Phys. J. A 22, 75 (2004). 18. G. Fazio, G. Giardina, G. Mandaglio, R. Ruggieri, A. I. Muminov, A. K. Nasirov, Yu. Ts. Oganessian, A. G. Popeko, R. Sagaidak, A. Yeromin, S. Hofmann, F. Hanappe, C. Stodel, Phys. Rev. C 72, (2005). 19. W. Loveland, D. Peterson, A. M. Vinodkumar, P. H. Sprunger, D.Shapira, J. F. Liang, G. A. Souliotis, D. J. Morrissey, and P.Lofy, Phys. Rev. C 74, (2006). 20. W. Loveland, Phys. Rev. C 76, (2007). 21. R. S. Naik, W. Loveland, P. H. Sprunger, A. M. Vinodkumar, D. Peterson, C. L. Jiang, S. Zhu, X. Tang, E. F. Moore, and P. Chowdhury, Phys. Rev. C 76, (2007).

E = E gs + E * - total energy E n = (M n +M A-1 ) c 2 = E gs + B n E f – the saddle-point energy To calculate the ratio Γ n /Γ f we need the level density of the daugther nucleus (A-1) ρ(E-E n ) and the level density at the saddle-point of the nucleus A ρ(E-E f ) E-E n = E gs +E * -E gs -B n = E* - B n E-E f = E gs +E*-E f = E*- (E f -E gs )

m n, s n, ε n - mass, spin and kinetic energy of the emitted neutron f - level density of the fissioning nucleus (at saddle) n - level density of the daughter nucleus (A-1) E – total energy E f – saddle-point energy E n - energy of the system n + (A -1) nucleus E-E n = E gs +E*-E gs -B n = E*- B n E-E f = E gs +E*-E f = E*- (E f -E gs ) R. Vandenbosch & J.R. Huizenga, Nuclear Fission - formula (VII-3) R. Vandenbosch & J.R. Huizenga, Nuclear Fission - formula (VII-7) Assuming:, and a =const (1) (2)

independent of the excitation energy Shell effects included using: the energy dependent level density parameter ( A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 29 (1975) 255 ) where: E * - excitation energy, E d – damping parameter E shell – shell correction energy, a LDM - the LDM level density parameter or an exponentially dependent fission barrier replacing the saddle-point energy (erroneously postulated by G. G. Adamian, N. V. Antonenko and W. Scheid, Nucl. Phys. A678, 24 (2000), and their followers) E f – E gs = B LDM + B micr exp(-E*/E d ) dependent on the excitation energy for super-heavy nuclei B LDM = 0 B micr = - E shell (gs) a n, a f = const no shell effects in (A-1) nucleus shell effects in fission channel, only via E shell (gs )

G.G. Adamian et al. PRC 69, (2004) PRC 62, (2000) PRC 69, (2004) PRC 69, (2004) PRC 69, (2004) W. Loveland PRC 76, (2007) W. Loveland et al. PRC 74, (2006) R.S. Naik et al. PRC 76, (2007) A CN = 266 B n = 8.22 MeV B LDM = 0 B micro = -E shell = 5.27 MeV B f = B micro exp(-E*/E d ) a n, a f = const numerical integration, with energy dependent level density parameter, B f = 5.27 MeV

W. Loveland PRC 76, (2007) W. Loveland et al. PRC 74, (2006) R.S. Naik et al. PRC 76, (2007) G.G. Adamian et al. PRC 69, (2004) PRC 62, (2000) PRC 69, (2004) PRC 69, (2004) PRC 69, (2004) A CN = 297 B n = 6.21 MeV B LDM = 0 B micro = -E shell = 8.27 MeV B f = B micro exp(-E*/E d ) a n, a f = const numerical integration, with energy dependent level density parameter, B f = 8.27 MeV

In case of the saddle-point energy (erroneously) replaced by the energy dependent fission barrier B f (E * ) = - E shell (gs) exp(-E * /E d ), the classical fission threshold shifts from E thr = B f = - E shell (gs) to a value satisfying E thr - E shell (gs)exp(-E thr /E d ) = 0 For Z=118 E thr = B f = 8.27 MeV E thr = 6.40 MeV (for E d =25 MeV) Conclusions: The scheme of calculating the Γ n /Γ f ratios using the concept of energy dependent fission barrier of Adamian et al. is erroneous and leads to predictions which at low excitation energies may deviate from correctly evaluated values by a factor of 1000 or more. Moreover, it leads to unphysical predictions for the existence of fission at energetically forbidden subt h reshold excitation energies.

Excitation energy dependence of Γ n /Γ f for different values of (E f -B n ). The level density parameters a f and a n were assumed to be equal (25 MeV -1 ) and B n = 6 MeV. Figure taken from Nuclear Fission R. Vandenbosh & J.R. Huizenga Academic Press 1973

E def (ε) δ shell g.s. E def TOT E def LDM ε δ shell sd BfBf