SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting 1-26-12.

Slides:



Advertisements
Similar presentations
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Louisiana Tech University Ruston, LA Slide 1 Energy Balance Steven A. Jones BIEN 501 Wednesday, April 18, 2008.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Two-dimensional Structure and Particle Pinch in a Tokamak H-mode
Inter-ELM Edge Profile and Ion Transport Evolution on DIII-D John-Patrick Floyd, W. M. Stacey, S. Mellard (Georgia Tech), and R. J. Groebner (General Atomics)
Chemistry 232 Transport Properties.
Plasma Characterisation Using Combined Mach/Triple Probe Techniques W. M. Solomon, M. G. Shats Plasma Research Laboratory Research School of Physical Sciences.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
5. Simplified Transport Equations We want to derive two fundamental transport properties, diffusion and viscosity. Unable to handle the 13-moment system.
Non-diffusive terms of momentum transport as a driving force for spontaneous rotation in toroidal plasmas K.Ida, M.Yoshinuma, LHD experimental group National.
F. Cheung, A. Samarian, W. Tsang, B. James School of Physics, University of Sydney, NSW 2006, Australia.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Chalmers University of Technology The L-H transition on EAST Jan Weiland and C.S. Liu Chalmers University of Technoloy and EURATOM_VR Association, S
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
Joaquim Loizu P. Ricci, F. Halpern, S. Jolliet, A. Mosetto
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
Rotation effects in MGI rapid shutdown simulations V.A. Izzo, P.B. Parks, D. Shiraki, N. Eidietis, E. Hollmann, N. Commaux TSD Workshop 2015 Princeton,
Resonant magnetic perturbation effect on the tearing mode dynamics in EXTRAP T2R: experimental results and modeling L. Frassinetti, K.E.J. Olofsson, P.R.
TRANSP Needs for Physics Modules R. J. Hawryluk TRANSP Users Group Meeting March 24, 2015.
1 Non-neutral Plasma Shock HU Xiwei (胡希伟) 工 HU Xiwei (胡希伟) HE Yong (何勇) HE Yong (何勇) Hu Yemin (胡业民) Hu Yemin (胡业民) Huazhong University of Science and.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
4. Mg islands, electric fields, plasma rotation
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Planned Theory Contributions to the FY’2011 Joint Research Target on Pedestal Research R. J. Hawryluk Thanks to the Pedestal Working Group: C-S Chang,
SLM 2/29/2000 WAH 13 Mar NBI Driven Neoclassical Effects W. A. Houlberg ORNL K.C. Shaing, J.D. Callen U. Wis-Madison NSTX Meeting 25 March 2002.
Edge-SOL Plasma Transport Simulation for the KSTAR
Hysteresis in the L-H-L transition, D C McDonald, ITPA, Princeton 20091/22 Hysterics in the L-H transition D C McDonald.
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
EXTENSIONS OF NEOCLASSICAL ROTATION THEORY & COMPARISON WITH EXPERIMENT W.M. Stacey 1 & C. Bae, Georgia Tech Wayne Solomon, Princeton TTF2013, Santa Rosa,
Weixing Ding University of California, Los Angeles,USA collaborators: D.L. Brower, W. Bergerson, D. Craig, D. Demers, G.Fiksel, D.J. Den Hartog, J. Reusch,
DISCUSSION OF ISSUES, OPPORTUNITIES AND CONCLUSIONS FOR ROTATION AND MOMENTUM TRANSPORT SESSIONS 10th ITPA Transport Physics and CDBM TG Meetings Princeton.
Lecture 3. Full statistical description of the system of N particles is given by the many particle distribution function: in the phase space of 6N dimensions.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Summary on transport IAEA Technical Meeting, Trieste Italy Presented by A.G. Peeters.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
DIII-D RMP simulations: enhanced density transport and rotation screening V.A. Izzo, I. Joseph NIMROD meeting:
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
53rd Annual Meeting of the Division of Plasma Physics, November , 2011, Salt Lake City, Utah When the total flow will move approximately along the.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Computational Astrophysics: Magnetic Fields and Charged Particle Dynamics 8-dec-2008.
Nonlinear plasma-wave interactions in ion cyclotron range of frequency N Xiang, C. Y Gan, J. L. Chen, D. Zhou Institute of plasma phsycis, CAS, Hefei J.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
TEC Short introduction to plasma fluid theory Dominik Schega.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
54th Annual Meeting of the Division of Plasma Physics, October 29 – November 2, 2012, Providence, Rhode Island 5-pin Langmuir probe measures floating potential.
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
Mechanisms for losses during Edge Localised modes (ELMs)
Numerical investigation of H-mode threshold power by using LH transition models 8th Meeting of the ITPA Confinement Database & Modeling Topical Group.
Generation of Toroidal Rotation by Gas Puffing
Kinetic Theory.
Reduction of ELM energy loss by pellet injection for ELM pacing
Kinetic Theory.
Influence of energetic ions on neoclassical tearing modes
Kinetic Theory.
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Presentation transcript:

SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting

OBJECTIVES Fundamental understanding of edge/boundary physics that will enable: 1) the development of a predictive model for the edge pedestal pressure, temperature and density profiles in the absence of or between ELMs; 2) the mitigation or avoidance of ELMs; 3) the optimization of the edge pedestal; and 4) the development of a predictive model for the SOL-DIV and its interaction with the pedestal.

OVERVIEW of Proposed Research Measure thermal diffusivities and toroidal angular momentum transport rates in edge pedestal and identify the transport mechanisms producing them. Understand the causes of the toroidal and poloidal rotation and the radial electric field in the edge pedestal and how to control them. Understand the coupling of edge pedestal physics and SOL-DIV physics (including PMI).

Predictive Edge Pedestal Profile Model in the absence of ELMs or between ELMs derived from first 4 moments of Boltzmann Eq. Force balance among the pressure gradient, VxB forces, Er and lesser forces determines the ion pressure gradients Heat conduction determines the ion and electron temperature gradients Ion density gradients then are determined from

Predictive Model (cont.) “ Diffusion coefficient ” “ Pinch velocity ” The conductive heat fluxes are determined by solving the ion and electron heat balance equations for the total heat fluxes, solving the ion continuity equation for the particle flux and subtracting the convective heat fluxes from the total heat fluxes, then subtracting ion orbit loss and X-loss heat fluxes.

CONCLUSIONS THE RADIAL ELECTRIC FIELD, THE ROTATION VELOCITIES AND THE ENERGY & MOMENTUM TRANSPORT COEFFICIENTS ARE IMPORTANT PHYSICS PARAMETERS IN THE EDGE PEDESTAL— WE SHOULD UNDERSTAND THEM. THERE SHOULD BE A STRONG RELATION BETWEEN THE EDGE PEDESTAL PARAMETERS AND THE SOL-DIV—WE SHOULD UNDERSTAND IT.

BACKGROUND

WORK TO DATE INDICATES PATH TO A PREDICTIVE EDGE PEDESTAL MODEL Peeling-ballooning mode 1 theory predicts the limiting edge pressure (for a given pressure width), or equivalently limiting pressure gradient, for ELM onset 2. Pedestal width can be correlated 3 with, consistent with KBM. Expt. and theoretical evidence 4 for a particle pinch that depends on Theoretical model 5 for pressure, temperature and density profiles in edge pedestal developed from first 4 fluid moments. Needs thermal and angular momentum transport coefficients and models for in edge plasma as input. RMP suppresses ELMs in low-collisionality edges by reducing the density, which seems to be associated with a reduction in inward pinch caused by a reduction in. Most of the comparisons 6 of theory with experimental have not taken ion orbit loss into account in determining and need to be redone. 1) PoP 9, 1277(2002). 2) NF 51, (2011). 3) NF 50, (2010). 4) NF 51, (2011). 5) NF submitted (2011). 6) PoP 15, (2008).

Experiment Interpretation Indicates In the absence of ELMs or between ELMs The D pinch velocity is predominantly determined by the radial electric field and the poloidal rotation velocity. The D pinch velocity is generally inward and much larger than the D radial particle velocity determined from the continuity equation taking into account recycling neutrals. Thus, the pressure gradient is primarily determined by Erad and Vpol. The D pinch velocity is different for L-mode vs. H-mode 7, for H-mode vs. RMP 8, for just before an ELM vs. just after an ELM 9. This is due largely to differences in the radial electric field and the poloidal velocity. There are large, poloidally asymmetric D particle flows in the SOL (also found in model calculations 10 ) which could affect flows in edge pedestal. 7) PoP 17, (2010). 8) NF 51, (2011). 9) NF 51, (2011). 10) PoP 16, (2009).

Focus of the Pedestal/Boundary Experimental Program Could be Understanding & Controlling 1.The mechanisms that determine the radial electric field and poloidal velocities (e.g. ion orbit and X loss, velocity spin-up, coupling with SOL and divertor) and how to control them--- control the pressure profile by controlling the force balance (pinch). 2.The mechanisms that determine the angular momentum transport frequencies (e.g. viscosity, anomalous transport), which contribute to determining the pressure profile via the diffusion coefficient D. 3.The mechanisms that determine the thermal diffusivities, which determine the temperature gradients. (Note that this requires an accurate determination of conductive heat fluxes, taking into account particle pinches, ion orbit losses 11 and other non-conductive mechanisms that are usually neglected.) 11) PoP 18, (2011)