The Theory of NP-Completeness

Slides:



Advertisements
Similar presentations
NP-Hard Nattee Niparnan.
Advertisements

JAYASRI JETTI CHINMAYA KRISHNA SURYADEVARA
Polynomial-time reductions We have seen several reductions:
1 NP-Complete Problems. 2 We discuss some hard problems:  how hard? (computational complexity)  what makes them hard?  any solutions? Definitions 
© The McGraw-Hill Companies, Inc., Chapter 8 The Theory of NP-Completeness.
NP-Complete Problems Reading Material: Chapter 10 Sections 1, 2, 3, and 4 only.
1 Polynomial Time Reductions Polynomial Computable function : For any computes in polynomial time.
The Theory of NP-Completeness
NP-Complete Problems Problems in Computer Science are classified into
NP-complete and NP-hard problems
88- 1 Chapter 8 The Theory of NP-Completeness P: the class of problems which can be solved by a deterministic polynomial algorithm. NP : the class.
Analysis of Algorithms CS 477/677
CSE 421 Algorithms Richard Anderson Lecture 27 NP Completeness.
Chapter 11: Limitations of Algorithmic Power
Chapter 11 Limitations of Algorithm Power Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Toward NP-Completeness: Introduction Almost all the algorithms we studies so far were bounded by some polynomial in the size of the input, so we call them.
P, NP, and NP-Complete Suzan Köknar-Tezel.
1 The Theory of NP-Completeness 2 NP P NPC NP: Non-deterministic Polynomial P: Polynomial NPC: Non-deterministic Polynomial Complete P=NP? X = P.
1 UNIT -6 P, NP, and NP-Complete. 2 Tractability u Some problems are intractable: as they grow large, we are unable to solve them in reasonable time u.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
The Theory of NP-Completeness 1. What is NP-completeness? Consider the circuit satisfiability problem Difficult to answer the decision problem in polynomial.
Chapter 11 Limitations of Algorithm Power. Lower Bounds Lower bound: an estimate on a minimum amount of work needed to solve a given problem Examples:
CSCE350 Algorithms and Data Structure
1 The Theory of NP-Completeness 2012/11/6 P: the class of problems which can be solved by a deterministic polynomial algorithm. NP : the class of decision.
Nattee Niparnan. Easy & Hard Problem What is “difficulty” of problem? Difficult for computer scientist to derive algorithm for the problem? Difficult.
Tonga Institute of Higher Education Design and Analysis of Algorithms IT 254 Lecture 8: Complexity Theory.
The Complexity of Optimization Problems. Summary -Complexity of algorithms and problems -Complexity classes: P and NP -Reducibility -Karp reducibility.
Summary  NP-hard and NP-complete  NP-completeness proof  Polynomial time reduction  List of NP-complete problems  Knapsack problem  Isomprphisim.
Polynomial-time reductions We have seen several reductions:
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
CSE 024: Design & Analysis of Algorithms Chapter 9: NP Completeness Sedgewick Chp:40 David Luebke’s Course Notes / University of Virginia, Computer Science.
1 Lower Bounds Lower bound: an estimate on a minimum amount of work needed to solve a given problem Examples: b number of comparisons needed to find the.
EMIS 8373: Integer Programming NP-Complete Problems updated 21 April 2009.
CSCI 3160 Design and Analysis of Algorithms Tutorial 10 Chengyu Lin.
The Theory of Complexity for Nonpreemptive Scheduling 1.
1 The Theory of NP-Completeness 2 Cook ’ s Theorem (1971) Prof. Cook Toronto U. Receiving Turing Award (1982) Discussing difficult problems: worst case.
1 How to prove that a problem is NPC. 2 Cook Cook showed the first NPC problem: SAT Cook received Turing Award in 1982.
NP-Complete Problems. Running Time v.s. Input Size Concern with problems whose complexity may be described by exponential functions. Tractable problems.
1 Chapter 34: NP-Completeness. 2 About this Tutorial What is NP ? How to check if a problem is in NP ? Cook-Levin Theorem Showing one of the most difficult.
NP-COMPLETE PROBLEMS. Admin  Two more assignments…  No office hours on tomorrow.
NP-Complete problems.
Design and Analysis of Algorithms - Chapter 101 Our old list of problems b Sorting b Searching b Shortest paths in a graph b Minimum spanning tree b Primality.
CS 3343: Analysis of Algorithms Lecture 25: P and NP Some slides courtesy of Carola Wenk.
CSE 589 Part V One of the symptoms of an approaching nervous breakdown is the belief that one’s work is terribly important. Bertrand Russell.
CS6045: Advanced Algorithms NP Completeness. NP-Completeness Some problems are intractable: as they grow large, we are unable to solve them in reasonable.
NPC.
NP Completeness Piyush Kumar. Today Reductions Proving Lower Bounds revisited Decision and Optimization Problems SAT and 3-SAT P Vs NP Dealing with NP-Complete.
CSC 413/513: Intro to Algorithms
Young CS 331 D&A of Algo. NP-Completeness1 NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and.
COMPLEXITY. Satisfiability(SAT) problem Conjunctive normal form(CNF): Let S be a Boolean expression in CNF. That is, S is the product(and) of several.
1 Ch 10 - NP-completeness Tractable and intractable problems Decision/Optimization problems Deterministic/NonDeterministic algorithms Classes P and NP.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
COMPLEXITY. Satisfiability(SAT) problem Conjunctive normal form(CNF): Let S be a Boolean expression in CNF. That is, S is the product(and) of several.
1 The Theory of NP-Completeness 2 Review: Finding lower bound by problem transformation Problem X reduces to problem Y (X  Y ) iff X can be solved by.
The NP class. NP-completeness Lecture2. The NP-class The NP class is a class that contains all the problems that can be decided by a Non-Deterministic.
CSE 332: NP Completeness, Part II Richard Anderson Spring 2016.
Advanced Algorithms NP-hard and NP-Complete Problems Instructor: Saeid Abrishami Ferdowsi University of Mashhad.
ICS 353: Design and Analysis of Algorithms NP-Complete Problems King Fahd University of Petroleum & Minerals Information & Computer Science Department.
The Theory of NP-Completeness
Chapter 10 NP-Complete Problems.
Richard Anderson Lecture 26 NP-Completeness
Richard Anderson Lecture 26 NP-Completeness
Hard Problems Introduction to NP
NP-Completeness Yin Tat Lee
ICS 353: Design and Analysis of Algorithms
NP-Complete Problems.
CS 3343: Analysis of Algorithms
NP-Completeness Yin Tat Lee
The Theory of NP-Completeness
Our old list of problems
Presentation transcript:

The Theory of NP-Completeness 2010/11/30

Polynomial-time Reductions We want to solve a problem R; we already have an algorithm for a problem S We have a transformation function T Correct answer for R on x is “yes”, iff the correct answer for S on T(x) is “yes” Problem R is polynomially reducible to (polynomially reduces to) problem S if such a transformation T can be computed in polynomial time (R  S) The point of reducibility: S is at least as hard to solve as R

Polynomial-time Reductions We use reductions to prove that a problem is NP-complete x is an input for R; x’ is an input for S (R  S) x x’ Algorithm for S T Yes or No answer Algorithm for R

P NPC NP NP: Non-deterministic Polynomial P: Polynomial ? NP: Non-deterministic Polynomial P: Polynomial NPC: Non-deterministic Polynomial Complete

NP : the class of decision problem which can be solved by a non-deterministic polynomial algorithm. P: the class of problems which can be solved by a deterministic polynomial algorithm. NP-hard: the class of problems to which every NP problem reduces. (It is “at least as hard as the hardest problems in NP.”) NP-complete: the class of problems which are NP-hard and belong to NP.

Nondeterministic algorithms A nondeterministic algorithm is an algorithm consisting of two phases: guessing (or choice) and checking. Furthermore, it is assumed that a nondeterministic algorithm always makes a correct guessing.

Nondeterministic algorithms Machines for running nondeterministic algorithms do not exist and they would never exist in reality. (They can only be made by allowing unbounded parallelism in computation.) (Quantum computation may be an approximation.) Nondeterministic algorithms are useful only because they will help us define a class of problems: NP problems

NP (Nondeterministic Polynomial) algorithm If the checking stage of a nondeterministic algorithm is of polynomial time-complexity, then this algorithm is called an NP (nondeterministic polynomial) algorithm.

NP problem If a decision problem can be solved by a NP algorithm, this problem is called an NP (nondeterministic polynomial) problem. NP problems : must be decision problems

Decision problems The solution is simply “Yes” or “No”. Optimization problem : harder Decision problem : easier E.g. the traveling salesperson problem Optimization version: Find the shortest tour (cycle) Decision version: Is there a tour whose total length is less than or equal to a constant C ?

Decision version of sorting Given a1, a2,…, an and c, is there a permutation of ais ( a1, a2 , … ,an ) such that∣a2–a1∣+∣a3–a2∣+ … +∣an–an-1∣< C ?

Decision vs Original Version We consider decision version problem D rather than the original problem O because we are addressing the lower bound of a problem and D ∝ O

To express Nondeterministic Algorithm by three special commands Choice(S) : arbitrarily chooses one of the elements in set S at one step Failure : an unsuccessful completion Success : a successful completion

Example: Nondeterministic searching Algorithm input: n elements and a target element x output: success if x is found among the n elements; failure, otherwise. j ← choice(1 : n) /* guess if A(j) = x then success /* check else failure A nondeterministic algorithm terminates unsuccessfully iff there exist no set of choices leading to a success signal. The time required for choice(1 : n) is O(1).

Relationship Between NP and P It is known PNP. However, it is not known whether P=NP or whether P is a proper subset of NP It is believed NP is much larger than P We cannot find a polynomial-time algorithm for many NP problems. But, no NP problem is proved to have exponential lower bound. (No NP problem has been proved to be not in P.) So, “does P = NP?” is still an open question! Cook tried to answer the question by proposing NPC.

NP-hard A problem X is NP-hard if every NP problem (polynomially) reduces to X.

NP-complete (NPC) A problem X is NP-complete (NPC) if X∈NP and every NP problem (polynomially) reduces to X. So, X  NPC if XNP-hard and XNP

Cook’s Theorem (1971) Prof. Cook Toronto U. Receiving Turing Award (1982) Discussing difficult problems whose worst case lower bound seems to be in the order of an exponential function The problems are called NP-complete (NPC) Problems

Cook’s Theorem (1971) NP = P iff SAT  P That is, NP = P iff the satisfiability (SAT) problem is a P problem SAT is NP-complete It is the first NP-complete problem Every NP problem reduces to SAT

SAT is NP-complete Every NP problem can be solved by an NP algorithm Every NP algorithm can be transformed in polynomial time to an SAT problem Such that the SAT problem is satisfiable iff the answer for the original NP problem is “yes” That is, every NP problem  SAT SAT is NP-complete

Proof of NP-Completeness To show that X is NP-complete (I) Prove that X is an NP problem (II) Prove that  Y  NPC, Y  X  X  NPC Why ? Transitive property of polynomial-time reduction

Karp R. Karp showed several NPC problems, such as 3-STA, node (vertex) cover, and Hamiltonian cycle problems, etc. Karp received Turing Award in 1985

NP-Completeness Proof: Reduction All NP problems SAT Clique 3-SAT Vertex Cover Chromatic Number Dominating Set

NP-Completeness “NP-complete problems”: the hardest problems in NP Interesting property If any one NP-complete problem can be solved in polynomial time, then every problem in NP can also be solved in polynomial time (i.e., P=NP) Many believe P≠NP

Importance of NP-Completeness NP-complete problems: considered “intractable” Important for algorithm designers & engineers Suppose you have a problem to solve Your colleagues have spent a lot of time to solve it exactly but in vain See whether you can prove that it is NP-complete If yes, then spend your time developing an approximation (heuristic) algorithm Many natural problems can be NP-complete

Some concepts Up to now, none of the NPC problems can be solved by a deterministic polynomial time algorithm in the worst case. It does not seem to have any polynomial time algorithm to solve the NPC problems. The lower bound of any NPC problem seems to be in the order of an exponential function. The theory of NP-completeness always considers the worst case.

Caution ! If a problem is NP-complete, its special cases may or may not be of exponential time-complexity. We consider worst case lower bound in NP-complete.

Even harder problems: Undecidable Problems They cannot be solved by guessing and checking. They are even more difficult than NP problems. E.G.: Halting problem: Given an arbitrary program with an arbitrary input data (the number of input cases is infinite), will the program terminate or not? It is not NP It is NP-hard (SAT Halting problem)

Some known NPC problems SAT problem 3SAT problem 0/1 knapsack problem Traveling salesperson problem Partition problem Art gallery problem Clique problem Vertex Cover problem Dominating Set problem Chromatic Coloring problem

The satisfiability (SAT) problem Def : Given a Boolean formula, determine whether this formula is satisfiable or not.   A literal (Boolean variable): xi or -xi A clause (disjunction of variables): ci  x1 v x2 v -x3 A formula : conjunctive normal form C1& c2 & … & cm

NPC Problems SAT: Give a Boolean expression (formula) in CNF (conjunctive normal form), determine if it is satisfiable. 3SAT: Give a Boolean expression in CNF such that each clause has exactly 3 variables (literals), determine if it is satisfiable.

The satisfiability (SAT) problem The satisfiability problem The logical formula : x1 v x2 v x3 & - x1 & - x2 the assignment : x1 ← F , x2 ← F , x3 ← T will make the above formula true (-x1, -x2 , x3) represents

The satisfiability problem If there is at least one assignment which satisfies a formula, then we say that this formula is satisfiable; otherwise, it is unsatisfiable. An unsatisfiable formula : x1 v x2 & x1 v -x2 & -x1 v x2 & -x1 v -x2

Resolution principle Let formula F= c1 : -x1 v -x2 v x3 c2 : x1 v x4  c3 : -x2 v x3 v x4 (resolvent) x1 cannot satisfy c1 and c2 at the same time, so it is deleted to deduce a resolvent of c1 and c2. This is called the resolution principle .

Satisfiable If no new clauses can be deduced  satisfiable -x1 v -x2 v x3 (1) x1 (2) x2 (3) (1) & (2) -x2 v x3 (4) (4) & (3) x3 (5) (1) & (3) -x1 v x3 (6)

Unsatisfiable If an empty clause is deduced  unsatisfiable - x1 v -x2 v x3 (1) x1 v -x2 (2) x2 (3) - x3 (4)    deduce   (1) & (2) -x2 v x3 (5) (4) & (5) -x2 (6) (6) & (3) □ (7)

Nondeterministic SAT Guessing for i = 1 to n do xi ← choice( true, false ) if E(x1, x2, … ,xn) is true Checking then success else failure

Proof of Cook’s Theory Dr. Cook Prove the theory by showing that all instances of each NP algorithm can reduce to the SAT problem. Below, we show a simple example that the NP searching algorithm reduces to the SAT problem.

The NP searching algorithm reduces to the SAT problem Does there exist a number in { x(1), x(2), …, x(n) }, which is equal to 7? For example, assume n = 2 The algorithm becomes:

The NP searching algorithm reduces to SAT i=1 v i=2 & i=1 → i≠2 & i=2 → i≠1 & x(1)=7 & i=1 → SUCCESS & x(2)=7 & i=2 → SUCCESS & x(1)≠7 & i=1 → FAILURE & x(2)≠7 & i=2 → FAILURE & FAILURE → -SUCCESS & SUCCESS (Guarantees a successful termination when it is possible) & x(1)=7 (Input Data) & x(2)≠7

The NP searching algorithm reduces to SAT CNF (conjunctive normal form) : i=1 v i=2 (1) i≠1 v i≠2 (2) x(1)≠7 v i≠1 v SUCCESS (3) x(2)≠7 v i≠2 v SUCCESS (4) x(1)=7 v i≠1 v FAILURE (5) x(2)=7 v i≠2 v FAILURE (6) -FAILURE v -SUCCESS (7) SUCCESS (8) x(1)=7 (9) x(2)≠7 (10)

The NP searching algorithm reduces to SAT Satisfiable at the following assignment : i=1 satisfying (1) i≠2 satisfying (2), (4) and (6) SUCCESS satisfying (3), (4) and (8) -FAILURE satisfying (7) x(1)=7 satisfying (5) and (9) x(2)≠7 satisfying (4) and (10)

The NP searching algorithm reduces to SAT Searching for 7, but x(1)7, x(2)7 CNF :

The NP searching algorithm reduces to SAT Apply resolution principle :

Searching in CNF with inputs

0/1 Knapsack problem Given M (weight limit) and P, is there is a solution with a profit larger than P? This is an NPC problem. P1 P2 P3 P4 P5 P6 P7 P8 Profit 10 5 1 9 3 4 11 17 Weight 7 22 15

Traveling salesperson problem Given: A set of n planar points and a value L Find: Is there a closed tour which includes all points exactly once such that its total length is less than L? This is an NPC problem.

Partition problem Given: A set of positive integers S Find: Is there a partition of S1 and S2 such that S1S2=, S1S2=S, iS1i=iS2 i (partition S into S1 and S2 such that element sum of S1 is equal to that of S2) e.g. S={1, 7, 10, 9, 5, 8, 3, 13} S1={1, 10, 9, 8} S2={7, 5, 3, 13} This problem is NP-complete.

Art gallery problem: *Given a constant C, is there a guard placement such that the number of guards is less than C and every wall is monitored? *This is an NPC problem.

NPC Problems CLIQUE(k): Does G=(V,E) contain a clique of size k? Definition: A clique in a graph is a set of vertices such that any pair of vertices are joined by en edge.

NPC Problems Vertex Cover(k): Given a graph G=(V, E) and an integer k, does G have a vertex cover with k vertices? Definition: A vertex cover of G=(V, E) is V’V such that every edge in E is incident to some vV’.

NPC Problems Dominating Set(k): Given an graph G=(V, E) and an integer k, does G have a dominating set of size k ? Definition: A dominating set D of G=(V, E) is DV such that every vV is either in D or adjacent to at least one vertex of D.

NPC Problems Chromatic Coloring(k): Given a graph G=(V, E) and an integer k, does G have a coloring for k Definition A coloring of a graph G=(V, E) is a function f : V  { 1, 2, 3,…, k }  if (u, v)  E, then f(u)f(v).

Q&A