Halliday/Resnick/Walker Fundamentals of Physics 8th edition

Slides:



Advertisements
Similar presentations
Momentum and Collisions
Advertisements

Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Center of Mass and Linear Momentum
Physics 111: Mechanics Lecture 12
Notes Chapter 8 Momentum Objectives:
Momentum and Collisions
Chapter 7 Impulse and Momentum.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures
Chapter 7: Linear Momentum (p)
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Momentum and Collisions
Ch. 8 Momentum and its conservation
Linear Momentum why is more force needed to stop a train than a car if both travel at the same speed? why does a little tiny bullet have so much force.
MOMENTUM Definition: Momentum (Symbol : ….) is defined as the product of the ………….. and ……………. of a moving body. Momentum p = units: ……………. N.B. Since.
Momentum, Impulse, and Collisions
Momentum and Collisions
Today: Momentum – chapter 9 11/03 Finish momentum & review for exam 11/8 Exam 2 (5 – 8) 11/10 Rotation 11/15 Gravity 11/17 Waves & Sound 11/22 Temperature.
Momentum and Its Conservation
Momentum and Its Conservation LEQ: What is Momentum?
Chapter 7 Impulse and Momentum. There are many situations when the force on an object is not constant.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kg·m/s A quantity used in collisions So a small object.
Chapter 9-10 Clicker Questions
Reading Quiz - Momentum
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Momentum and Collisions Chapter 6 Table of Contents Section 1 Momentum.
Linear Momentum Impulse & Collisions. What is momentum?  Momentum is a measure of how hard it is to stop or turn a moving object.  What characteristics.
Reading and Review. A mass attached to a vertical spring causes the spring to stretch and the mass to move downwards. What can you say about the spring’s.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Chapter 7 Impulse and Momentum.
Momentum.
Chapter 5: Momentum Momentum: a measure of motion
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse of a force is the product of the average force and.
Momentum, impulse, and collisions Chapter 8 Sections 1-5.
Momentum Introduction to Momentum. What is Momentum? The quantity of motion of a moving body Depends on mass and velocity Measured by multiplying mass.
Momentum and Impulse. March 24, 2009 Momentum and Momentum Conservation  Momentum  Impulse  Conservation of Momentum  Collision in 1-D  Collision.
Momentum.
Momentum Physics Physics Definition : Linear momentum of an object of mass (m) moving with a velocity (v) is defined as the product of the mass.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kgm/s A quantity used in collisions So a small object.
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant.
Momentum Momentum and Collisions This chapter is concerned with inertia and motion. Momentum helps us understand collisions.
Phys211C8 p1 Momentum everyday connotations? physical meaning the “true” measure of motion (what changes in response to applied forces) Momentum (specifically.
Chapter 7 Impulse and Momentum. You are stranded in the middle of an ice covered pond. The ice is frictionless. How will you get off?
Agenda Aim: SWBAT recognize kinetic energy is related to momentum by the end of today’s lesson. Tasks: Kinetic Energy and Momentum PPT notes Example Problems.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant.
Ying Yi PhD Chapter 7 Impulse and Momentum 1 PHYS HCC.
PHY 151: Lecture 9B 9.5 Collisions in Two Dimensions 9.6 The Center of Mass 9.7 Systems of Many Particles 9.8 Deformable Systems 9.9 Rocket Propulsion.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Momentum and Collisions Chapter 6 Table of Contents Section 1 Momentum.
Momentum, impulse and yet another conservation principle
Chapter 7 Impulse and Momentum.
Linear Momentum and Collisions
Chapter 7 Impulse and Momentum.
Linear Momentum Impulse & Collisions.
Momentum, impulse and yet another conservation principle
momentum = mass  velocity
Chapter 7 Impulse and Momentum.
Momentum and Collisions
Momentum, impulse and yet another conservation principle
Chapter 6 Objectives Compare the momentum of different moving objects.
Center of Mass & Linear Momentum
Chapter 9: Linear Momentum and Collisions
Standardized Test Prep
Semester Review Jeopardy.
Chapter 7 Impulse and Momentum.
Chapter 7 Impulse and Momentum.
Homework: WS: momentum & impulse
Momentum and Collisions
Momentum, Impulse, and Collisions
Presentation transcript:

Halliday/Resnick/Walker Fundamentals of Physics 8th edition Classroom Response System Questions Chapter 9 Center of Mass and Linear Momentum Reading Quiz Questions

9.2.1. Complete the following statement: The center of mass is a) the region of an object where the density has the largest value. b) the region of an object where most of the mass is located. c) the point within an object that moves as if all of the object’s mass where located there. d) the point at the geometrical center of an object. e) the only point on an object at which the gravitational force acts.

9.2.1. Complete the following statement: The center of mass is a) the region of an object where the density has the largest value. b) the region of an object where most of the mass is located. c) the point within an object that moves as if all of the object’s mass where located there. d) the point at the geometrical center of an object. e) the only point on an object at which the gravitational force acts.

9.2.2. Which one of the following statements concerning the center of mass of an object is true? a) The velocity of the center of mass of a system of objects is constant when the sum of the external forces acting on the system is zero. b) The center of mass of a system of objects cannot change even if there are forces acting on the objects. c) All of an object’s mass is located at its center of mass. d) The velocity of the center of mass of a system of objects is greatly affected by a collision of objects within the system. e) The center of mass of an object must be located within the object.

9.2.2. Which one of the following statements concerning the center of mass of an object is true? a) The velocity of the center of mass of a system of objects is constant when the sum of the external forces acting on the system is zero. b) The center of mass of a system of objects cannot change even if there are forces acting on the objects. c) All of an object’s mass is located at its center of mass. d) The velocity of the center of mass of a system of objects is greatly affected by a collision of objects within the system. e) The center of mass of an object must be located within the object.

9.2.3. Three objects are located in the x-y­ plane as shown in the figure. Determine the x coordinate of the center of mass for this system of three objects. Note the masses of the objects: mA = 6.0 kg, mB = 2.0 kg, and mC = 4.0 kg. a) 5.6 b) 6.3 c) 7.6 d) 8.3 e) 8.9

9.2.3. Three objects are located in the x-y­ plane as shown in the figure. Determine the x coordinate of the center of mass for this system of three objects. Note the masses of the objects: mA = 6.0 kg, mB = 2.0 kg, and mC = 4.0 kg. a) 5.6 b) 6.3 c) 7.6 d) 8.3 e) 8.9

9.2.4. Complete the following statement: the center of mass of a system of particles has a constant velocity if a) the velocity of the center of mass is initially zero. b) the particles are distributed symmetrically around the center of mass. c) the forces exerted by the particles on each other sum to zero. d) the center of mass is at the geometric center of the system. e) the external forces acting on particles of the system sum to zero.

9.2.4. Complete the following statement: the center of mass of a system of particles has a constant velocity if a) the velocity of the center of mass is initially zero. b) the particles are distributed symmetrically around the center of mass. c) the forces exerted by the particles on each other sum to zero. d) the center of mass is at the geometric center of the system. e) the external forces acting on particles of the system sum to zero.

9.3.1. Complete the following statement: The change in momentum with respect to time for an object a) is always positive. b) is always equal to zero. c) has a constant value if the force acting on the object is conservative. d) is equal in magnitude to the net force acting on the object, but opposite in direction. e) is a scalar quantity that may be negative, zero, or positive.

9.3.1. Complete the following statement: The change in momentum with respect to time for an object a) is always positive. b) is always equal to zero. c) has a constant value if the force acting on the object is conservative. d) is equal in magnitude to the net force acting on the object, but opposite in direction. e) is a scalar quantity that may be negative, zero, or positive.

9.3.2. Which one of the following statements concerning the momentum of a system when the net force acting on the system is equal to zero newtons is true? a) The momentum of the system is increasing. b) The momentum of the system is decreasing. c) The momentum of the system is equal to zero kgm/s. d) The momentum of the system has a constant value. e) The momentum of the system has a negative value.

9.3.2. Which one of the following statements concerning the momentum of a system when the net force acting on the system is equal to zero newtons is true? a) The momentum of the system is increasing. b) The momentum of the system is decreasing. c) The momentum of the system is equal to zero kgm/s. d) The momentum of the system has a constant value. e) The momentum of the system has a negative value.

9.3.3. Which one of the following statements concerning the momentum of a system when the net force acting on the system has a positive value is true? a) The momentum of the system is increasing. b) The momentum of the system is decreasing. c) The momentum of the system is equal to zero kgm/s. d) The momentum of the system has a constant value. e) The momentum of the system has a negative value.

9.3.3. Which one of the following statements concerning the momentum of a system when the net force acting on the system has a positive value is true? a) The momentum of the system is increasing. b) The momentum of the system is decreasing. c) The momentum of the system is equal to zero kgm/s. d) The momentum of the system has a constant value. e) The momentum of the system has a negative value.

9.4.1. Which one of the following statements is true concerning momentum? a) Momentum is a force. b) Momentum is a velocity. c) Momentum is a scalar quantity. d) The momentum of an object is always positive. e) Momentum is measured in kg  m/s.

9.4.1. Which one of the following statements is true concerning momentum? a) Momentum is a force. b) Momentum is a velocity. c) Momentum is a scalar quantity. d) The momentum of an object is always positive. e) Momentum is measured in kg  m/s.

9.4.2. Momentum may be expressed using which of the following units? a) N / s b) kg / m c) kg  m/s d) kg / (m  s) e) N  kg / s

9.4.2. Momentum may be expressed using which of the following units? a) N / s b) kg / m c) kg  m/s d) kg / (m  s) e) N  kg / s

9.4.3. The momentum of an object is not dependent on which one of the following quantities? a) acceleration b) inertia c) mass d) speed e) velocity

9.4.3. The momentum of an object is not dependent on which one of the following quantities? a) acceleration b) inertia c) mass d) speed e) velocity

9.6.1. As the name implies, the linear momentum-impulse theorem provides a relationship between impulse and momentum. Which one of the following statements correctly describes that relationship? a) An impulse is equal to the work done on an object when a net force acts on an object and it has a displacement. b) An impulse is equal to the change in an object’s momentum that occurs when a net force acts on it. c) An impulse is equal to one-half of the object’s momentum squared. d) An impulse is equal to the product of the net force acting on the object and its momentum. e) An impulse is equal to the object’s momentum divided by the product of the net force and the time interval during which the force acts.

9.6.1. As the name implies, the linear momentum-impulse theorem provides a relationship between impulse and momentum. Which one of the following statements correctly describes that relationship? a) An impulse is equal to the work done on an object when a net force acts on an object and it has a displacement. b) An impulse is equal to the change in an object’s momentum that occurs when a net force acts on it. c) An impulse is equal to one-half of the object’s momentum squared. d) An impulse is equal to the product of the net force acting on the object and its momentum. e) An impulse is equal to the object’s momentum divided by the product of the net force and the time interval during which the force acts.

9.6.2. Which of the following units are used for an impulse? a) kg  m/s b) kg / m c) N / s d) kg / (m  s) e) N  kg / s

9.6.2. Which of the following units are used for an impulse? a) kg  m/s b) kg / m c) N / s d) kg / (m  s) e) N  kg / s

9.6.3. Which one of the following quantities is equal to the change in momentum of an object during a collision? a) impulse b) net force c) work d) change in kinetic energy e) maximum force

9.6.3. Which one of the following quantities is equal to the change in momentum of an object during a collision? a) impulse b) net force c) work d) change in kinetic energy e) maximum force

9.7.1. In which one of the following situations is linear momentum not conserved? a) A golf ball is struck by a putter. b) A bowling ball collides with ten pins. c) A tree limb is struck by lightning and falls to the ground. d) A bomb suspended by a string explodes into one hundred fragments. e) An astronaut floating in space throws a hammer away and subsequently moves in the opposite direction.

9.7.1. In which one of the following situations is linear momentum not conserved? a) A golf ball is struck by a putter. b) A bowling ball collides with ten pins. c) A tree limb is struck by lightning and falls to the ground. d) A bomb suspended by a string explodes into one hundred fragments. e) An astronaut floating in space throws a hammer away and subsequently moves in the opposite direction.

9.7.2. A rocket is propelled forward as very high speed gases are ejected out of its back. Which one of the following is the best explanation as to why the rocket is propelled forward? a) The rocket is propelled forward due to the conservation of energy. b) The rocket is propelled forward due to the conservation of momentum. c) Because the gases are pushing against the air, the air propels the rocket forward. d) The rocket is propelled forward because both energy and momentum must be conserved. e) The high speed gases push on the rocket as they are ejected and propel it forward.

9.7.2. A rocket is propelled forward as very high speed gases are ejected out of its back. Which one of the following is the best explanation as to why the rocket is propelled forward? a) The rocket is propelled forward due to the conservation of energy. b) The rocket is propelled forward due to the conservation of momentum. c) Because the gases are pushing against the air, the air propels the rocket forward. d) The rocket is propelled forward because both energy and momentum must be conserved. e) The high speed gases push on the rocket as they are ejected and propel it forward.

9.7.3. During a certain process, the linear momentum of a system is conserved. Which one of the following statements concerning this system is correct? a) The vector sum of the momentum of the objects that make up the system is equal to zero kg  m/s. b) The vector sum of any internal forces within the system results in an acceleration of one or more objects within the system. c) The principle of the conservation of mechanical energy automatically applies to the system. d) The vector sum of the average external forces acting on the system is equal to zero newtons. e) No internal or external forces are acting on the objects within the system.

9.7.3. During a certain process, the linear momentum of a system is conserved. Which one of the following statements concerning this system is correct? a) The vector sum of the momentum of the objects that make up the system is equal to zero kg  m/s. b) The vector sum of any internal forces within the system results in an acceleration of one or more objects within the system. c) The principle of the conservation of mechanical energy automatically applies to the system. d) The vector sum of the average external forces acting on the system is equal to zero newtons. e) No internal or external forces are acting on the objects within the system.

9. 7. 4. A rifle of mass M is initially at rest 9.7.4. A rifle of mass M is initially at rest. A bullet of mass m is fired from the rifle with a velocity v relative to the ground. Which one of the following expressions gives the velocity of the rifle relative to the ground after the bullet is fired. a) mv b) mv c) Mv/m d) mv/M e) mv/M

9. 7. 4. A rifle of mass M is initially at rest 9.7.4. A rifle of mass M is initially at rest. A bullet of mass m is fired from the rifle with a velocity v relative to the ground. Which one of the following expressions gives the velocity of the rifle relative to the ground after the bullet is fired. a) mv b) mv c) Mv/m d) mv/M e) mv/M

9. 8. 1. A collision between two objects is elastic 9.8.1. A collision between two objects is elastic. Which one of the following statements concerning this situation is true? a) The total kinetic energy of the objects is the same before and after the collision. b) The total momentum of the objects is zero kgm/s after the collision. c) The objects stick together and move as one object after the collision. d) The kinetic energy of the objects is zero joules after the collision. e) The vector sum of the velocities of the two objects is equal to zero m/s after the collision.

9. 8. 1. A collision between two objects is elastic 9.8.1. A collision between two objects is elastic. Which one of the following statements concerning this situation is true? a) The total kinetic energy of the objects is the same before and after the collision. b) The total momentum of the objects is zero kgm/s after the collision. c) The objects stick together and move as one object after the collision. d) The kinetic energy of the objects is zero joules after the collision. e) The vector sum of the velocities of the two objects is equal to zero m/s after the collision.

9.8.2. Which one of the following provides a basis to distinguish different types of collisions? a) conservation of linear momentum b) conservation of mechanical energy c) conservation of kinetic energy d) conservation of impulse e) conservation of mass

9.8.2. Which one of the following provides a basis to distinguish different types of collisions? a) conservation of linear momentum b) conservation of mechanical energy c) conservation of kinetic energy d) conservation of impulse e) conservation of mass

9. 8. 3. A collision between two objects is inelastic 9.8.3. A collision between two objects is inelastic. Which one of the following statements concerning this situation is true? a) The vector sum of the velocities of the two objects is equal to zero m/s after the collision. b) The total momentum of the objects after the collision is less than it was before the collision. c) The objects bounce away from each other after the collision. d) The kinetic energy of the objects is zero joules after the collision. e) The total kinetic energy of the objects after the collision is less than it was before the collision.

9. 8. 3. A collision between two objects is inelastic 9.8.3. A collision between two objects is inelastic. Which one of the following statements concerning this situation is true? a) The vector sum of the velocities of the two objects is equal to zero m/s after the collision. b) The total momentum of the objects after the collision is less than it was before the collision. c) The objects bounce away from each other after the collision. d) The kinetic energy of the objects is zero joules after the collision. e) The total kinetic energy of the objects after the collision is less than it was before the collision.

9.8.4. A boy of mass m runs with a speed v and jumps onto a sled on an icy pond. The sled was at rest before the boy jumped onto it. After the jump, the sled and boy move at a speed v/2. What is the mass of the sled? a) m/2 b) m c) 2m d) 3m e) 4m

9.8.4. A boy of mass m runs with a speed v and jumps onto a sled on an icy pond. The sled was at rest before the boy jumped onto it. After the jump, the sled and boy move at a speed v/2. What is the mass of the sled? a) m/2 b) m c) 2m d) 3m e) 4m

9. 8. 5. Two objects are involved in an elastic collision 9.8.5. Two objects are involved in an elastic collision. Which one of the following statements concerning this situation is false? a) The total momentum is conserved. b) The magnitude of the force exerted by each object on the other object is equal. c) The kinetic energy of each object is the same before and after the collision. d) The total kinetic energy before the collision is equal to the total kinetic energy after the collision. e) The total kinetic energy is conserved.

9. 8. 5. Two objects are involved in an elastic collision 9.8.5. Two objects are involved in an elastic collision. Which one of the following statements concerning this situation is false? a) The total momentum is conserved. b) The magnitude of the force exerted by each object on the other object is equal. c) The kinetic energy of each object is the same before and after the collision. d) The total kinetic energy before the collision is equal to the total kinetic energy after the collision. e) The total kinetic energy is conserved.

9.8.6. During a maneuver in space, a space craft separates into two pieces, each of mass m. Before the separation, the spacecraft was moving with a speed v. If one of the pieces is at rest after the separation, which one of the following statements concerning this maneuver is true? a) This maneuver conserves kinetic energy. b) The maneuver does not conserve total energy. c) This maneuver does not conserve momentum. d) If one piece is at rest, the other is moving with a speed 2v. e) One piece cannot be at rest. The must both be moving with a speed v/2.

9.8.6. During a maneuver in space, a space craft separates into two pieces, each of mass m. Before the separation, the spacecraft was moving with a speed v. If one of the pieces is at rest after the separation, which one of the following statements concerning this maneuver is true? a) This maneuver conserves kinetic energy. b) The maneuver does not conserve total energy. c) This maneuver does not conserve momentum. d) If one piece is at rest, the other is moving with a speed 2v. e) One piece cannot be at rest. The must both be moving with a speed v/2.

9.8.7. Which one of the following quantities is conserved during an elastic collision, but not conserved during an inelastic collision? a) momentum b) kinetic energy c) total energy d) impulse e) net force

9.8.7. Which one of the following quantities is conserved during an elastic collision, but not conserved during an inelastic collision? a) momentum b) kinetic energy c) total energy d) impulse e) net force

9. 8. 8. A ball strikes a spring mounted on a wall 9.8.8. A ball strikes a spring mounted on a wall. As the spring is compressed the ball comes to a stop and then rebounds back in the direction it came. Which one of the following statements correctly describes the momentum of the system? a) The momentum of the system is larger after the collision with the spring. b) The momentum of the system is smaller after the collision with the spring. c) The momentum of the system is conserved before and after the collision with the spring, but not during the collision. d) The momentum of the system is conserved before, during, and after the collision with the spring.

9. 8. 8. A ball strikes a spring mounted on a wall 9.8.8. A ball strikes a spring mounted on a wall. As the spring is compressed the ball comes to a stop and then rebounds back in the direction it came. Which one of the following statements correctly describes the momentum of the system? a) The momentum of the system is larger after the collision with the spring. b) The momentum of the system is smaller after the collision with the spring. c) The momentum of the system is conserved before and after the collision with the spring, but not during the collision. d) The momentum of the system is conserved before, during, and after the collision with the spring.

9.9.1. Bird A, with a mass of 2.2 kg, is stationary while Bird B, with a mass of 1.7 kg, is moving due north from Bird A at 3 m/s. What is the velocity of the center of mass for this system of two birds? a) 1.4 m/s, due north b) 0.77 m/s, due north c) 1.7 m/s, due north d) 0.77 m/s, due south e) 1.4 m/s, due south

9.9.1. Bird A, with a mass of 2.2 kg, is stationary while Bird B, with a mass of 1.7 kg, is moving due north from Bird A at 3 m/s. What is the velocity of the center of mass for this system of two birds? a) 1.4 m/s, due north b) 0.77 m/s, due north c) 1.7 m/s, due north d) 0.77 m/s, due south e) 1.4 m/s, due south

9.9.2. Car A with a mass 2m is traveling due west at 20 m/s when it collides with car B traveling due west at 30 m/s. The mass of car B is m. If the collision occurred on an icy road, so that the surface is essentially frictionless, what is the final velocity of the cars, which became locked together during the collision? a) The cars are stationary. b) 10 m/s, due east c) 10 m/s, due west d) 20 m/s, due west e) None of the above answers is correct.

9.9.2. Car A with a mass 2m is traveling due west at 20 m/s when it collides with car B traveling due west at 30 m/s. The mass of car B is m. If the collision occurred on an icy road, so that the surface is essentially frictionless, what is the final velocity of the cars, which became locked together during the collision? a) The cars are stationary. b) 10 m/s, due east c) 10 m/s, due west d) 20 m/s, due west e) None of the above answers is correct.

9. 11. 1. Two pucks on an air hockey table collide elastically 9.11.1. Two pucks on an air hockey table collide elastically. Complete the following statement: when such a collision occurs in two dimensions, the before and after velocities are best determined by a) using the fact that momentum is conserved and that the initial speeds of the objects must equal the final speeds of the objects. b) remembering that momentum is a vector quantity that is conserved in each direction. c) applying Newton’s second law of motion and setting the net force equal to zero newtons. d) making use of the work-energy theorem. e) using the fact that the total energy is conserved.

9. 11. 1. Two pucks on an air hockey table collide elastically 9.11.1. Two pucks on an air hockey table collide elastically. Complete the following statement: when such a collision occurs in two dimensions, the before and after velocities are best determined by a) using the fact that momentum is conserved and that the initial speeds of the objects must equal the final speeds of the objects. b) remembering that momentum is a vector quantity that is conserved in each direction. c) applying Newton’s second law of motion and setting the net force equal to zero newtons. d) making use of the work-energy theorem. e) using the fact that the total energy is conserved.

9.12.1. A rocket of mass M is launched vertically upward from the surface of the Earth. The rocket accelerates upward with a constant acceleration a. Which one of the following expressions gives the rate at which fuel is being consumed by the rocket? a) R = 2Mvrel2/a b) R = Ma c) R = vrel2/2Ma d) e)

9.12.1. A rocket of mass M is launched vertically upward from the surface of the Earth. The rocket accelerates upward with a constant acceleration a. Which one of the following expressions gives the rate at which fuel is being consumed by the rocket? a) R = 2Mvrel2/a b) R = Ma c) R = vrel2/2Ma d) e)