THE GASEOUS STATE Gas Laws (6) Stoichiometry Gas Mixtures Kinetic Molecular Theory of Gases Effusion and Diffusion Real Gases.

Slides:



Advertisements
Similar presentations
Any Gas….. 4 Uniformly fills any container 4 Mixes completely with any other gas 4 Exerts pressure on its surroundings.
Advertisements

GASES! AP Chapter 10. Characteristics of Gases Substances that are gases at room temperature tend to be molecular substances with low molecular masses.
Gas Laws and KMT Chapter 5.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
The Gaseous State 5.1 Gas Pressure and Measurement 5.2 Empirical Gas Laws 5.3 The Ideal Gas Law 5.4 Stoichiometry and Gas Volumes.
Chapter 5: Gases Pressure KMT Gas Laws Effusion and Diffusion
The Gaseous State Chapter 12 Dr. Victor Vilchiz.
The Gaseous State Chapter 5.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
States of Matter Gas: Properties, Laws, KMT Liquid: Intermolecular Forces, VP, Phase Diagrams Solid: Crystal Structure, Types of Solids.
Chapter 5 Gases John A. Schreifels Chemistry 211.
Pressure Pressure: Force applied per unit area. Barometer: A device that measures atmospheric pressure. Manometer: A device for measuring the pressure.
Ch Gases Properties: Gases are highly compressible and expand to occupy the full volume of their containers. Gases always form homogeneous mixtures.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Energy and Gases Kinetic energy: is the energy of motion. Potential Energy: energy of Position or stored energy Exothermic –energy is released by the substance.
Chapter 5 The Gas Laws. Pressure  Force per unit area.  Gas molecules fill container.  Molecules move around and hit sides.  Collisions are the force.
Daniel L. Reger Scott R. Goode David W. Ball Chapter 6 The Gaseous State.
Chapter 11 Gases The Gas Laws of Boyle, Charles and Avogadro
Properties of Gases Important properties of a Gas Quantity n = moles
Chemistry 100 Gases and Gas Laws.
GASES Chapter 10. Example: Air 78% nitrogen 21% oxygen Molecules only take up about 0.1% of total volume (the rest is empty space)  extremely low density.
Chapter 10 and 11 Intermolecular forces and phases of matter Why does matter exist in different phases? What if there were no intermolecular forces? The.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Chapter 10 Gases. A Gas -Uniformly fills any container. -Mixes completely with any other gas -Exerts pressure on its surroundings.
Gases Courtesy of nearingzero.net.
Chapter 5 Gases.
1 Chapter 12: Gases and Their Properties. 2 Properties of Gases Gases form homogeneous mixtures Gases are compressible All gases have low densities 
A Gas -Uniformly fills any container. -Mixes completely with any other gas -Exerts pressure on its surroundings.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapter 10 Gases Chemistry, The Central Science, 10th edition
Chapter 5: Gases 5.1 Pressure. Gaseous State of Matter  has no distinct or __________ so fills any container  is easily compressed  completely with.
Gases and gas laws Chapter 12.
Gases Chang Chapter 5. Chapter 5 Outline Gas Characteristics Pressure The Gas Laws Density and Molar Mass of a Gas Dalton’s Law of Partial Pressure Kinetic.
Prentice Hall © 2003Chapter 10 Chapter 10 Gases CHEMISTRY The Central Science 9th Edition David P. White.
Dr. S. M. Condren Chapter 5 The Gaseous State. Dr. S. M. Condren Properties of Gases can be compressed exert pressure on whatever surrounds them expand.
Chapter 5 The Gaseous State HST Mr. Watson. HST Mr. Watson Properties of Gases can be compressed exert pressure on whatever surrounds them expand into.
Chapters 10 and 11: Gases Chemistry Mrs. Herrmann.
Chapter 121 Gases. 2 Characteristics of Gases -Expand to fill a volume (expandability) -Compressible -Readily forms homogeneous mixtures with other gases.
Chapter 10: Gases.
Objectives To learn about atmospheric pressure and how barometers work
Ch. 10 Gases. Properties Expand to fill their container Highly compressible Molecules are far apart.
Module 8 Gases. Substances that Exist as Gases At 25 o C and 760 torr (1 atm), the following substances exist as gases: Elements Compounds H2H2 HeHFNH.
Gases Unit 6. Kinetic Molecular Theory  Kinetic energy is the energy an object has due to its motion.  Faster object moves = higher kinetic energy 
1 The Gaseous State. 2 Gas Laws  In the first part of this chapter we will examine the quantitative relationships, or empirical laws, governing gases.
GASES Pressure Gas Laws (Boyle, Charles, Avogadro) Stoichiometry Gas Mixtures (Dalton) Kinetic Molecular Theory of Gases Effusion and Diffusion Real Gases.
Chapter 101 Gases. 2 Homework: 10.12, 10.28, 10.42, 10.48, 10.54, 10.66,
5 Postulates of Kinetic Theory 1) Spherical molecules in constant, random straight-line motion 2) “Elastic” collisions 3) Point masses 4) No interactions.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Quinnipiac University
Gases © 2009, Prentice-Hall, Inc. Chapter 10 Gases John Bookstaver St. Charles Community College Cottleville, MO Chemistry, The Central Science, 11th edition.
Gases KMT = particles constant motion AKE, temperature, pressure, volume, amount of a gas are all related.
Gases. Ideal Gases Ideal gases are imaginary gases that perfectly fit all of the assumptions of the kinetic molecular theory.  Gases consist of tiny.
 Gas particles are much smaller than the distance between them We assume the gas particles themselves have virtually no volume  Gas particles do not.
The Gaseous State. Gases consist of widely separated molecules in rapid motion. pressuretemperaturevolume molar amount All gases near room temperatures.
Prentice Hall © 2003Chapter 10 Chapter 10 Gases CHEMISTRY The Central Science 9th Edition.
 Properties of Gases  Gases uniformly fill any container  Gases are easily compressed  Gases mix completely with any other gas  Gases exert pressure.
Gas Laws.
Gas Laws.
Objectives To learn about atmospheric pressure and how barometers work
Physical Characteristics of Gases
Gas Laws Chapter 5.
Quinnipiac University
Quinnipiac University
Quinnipiac University
Quinnipiac University
Lecture Presentation Chapter 10 Gases.
Quinnipiac University
Physical Characteristics of Gases
Presentation transcript:

THE GASEOUS STATE Gas Laws (6) Stoichiometry Gas Mixtures Kinetic Molecular Theory of Gases Effusion and Diffusion Real Gases

GAS State of Matter Compressible since molecules are far apart. Takes the shape and volume of container. Forms homogeneous mixtures with other gases. Pressure is a gas property which tells us about the amount of gas present.

PRESSURE Pressure = Force/Area Devices to measure pressure: manometer and barometer Pressure Units –pascal = N/m 2 = kg/(m s 2 ) SI derived unit –1 mm Hg = 1 torr –1 std atm = 760 torr = E+05 Pa

GAS LAWS (empirical laws) Boyle’s Law relates V vs P: V α 1/P or PV = k at constant n and T (Fig 9.6) Charles’ Law relates V vs T (K): V α T or V/T = k at constant n and P (Fig 9.8) Avogadro’s Law relates V vs n: V α n or V/n = k at constant P and T

GAS LAWS (empirical laws) IDEAL GAS LAWPV = nRT –Equation of state for ideal gas –Note universality of equation; I.e. identity of the gas is unknown –Limiting law (limit of high T and low P) R = Gas Constant = (L-atm)/(mol-K) = J/(mol-K)

OTHER Note that T must be in units of Kelvin (K = o C + 273) STP means 1 atm AND K Molar volume of a gas = Volume of one mole of gas at STP = L

STOICHIOMETRY of GAS PHASE REACTIONS Use gas laws in stoichiometric problems Law of Combining Volumes (Gay-Lussac) Use the gas laws to find molar mass: –Use V, P, T and Ideal Gas Law to find n. –Use n and the mass, m, to find molar mass, M = m/n –Use P, T and density of gas, d, to find M because M = dRT/P

GAS MIXTURES DALTON’S LAW –Law of Partial Pressures –P TOTAL = P = ∑ P i at constant T and V –P i = n i RT/V = partial pressure of a gas –x i = mole fraction = n i /n TOTAL = P i /P TOTAL COLLECTING GASES OVER WATER –P TOTAL = P = P g + P w

KINETIC MOLECULAR THEORY OF GASES (1) GAS MOLECULES ARE FAR APART FROM EACH OTHER THEIR VOLUME IS NEGLIGIBLE THEY MOVE RAPIDLY AND RAMDONLY IN ALL DIRECTIONS AND AT VARIOUS SPEEDS INTERMOLECULAR FORCES ARE NEGLIGIBLE EXCEPT FOR COLLISIONS

KINETIC MOLECULAR THEORY (2) COLLISIONS ARE ELASTIC THE AVERAGE KINETIC ENERGY OF A MOLECULE IS PROPORTIONAL TO T. EXPLAINS MACROSCOPIC PROPERTIES LIKE P, T, V, v AND EMPIRICAL GAS LAWS

KINETIC MOLECULAR THEORY (QUANT.) Average kinetic energy = [(3/2) RT] α T Root mean square velocity –u rms = √(3RT/M) where R = J/(K-mol) Diffusion: Mixing of gases –Diffusion distance traveled α (1/ √ M) Effusion –Passage of gas through orifice into a vacuum –Graham’s Law: Effusion rate α (1/ √ M)

REAL GASES IDEAL: PV= nRT VDW: P eff V eff = nRT –(P + n 2 a/V 2 ) (V -nb) = nRT –First term accounts for non-zero attractive intermolecular forces –Second term accounts for non-zero molecular size