Surface-electrode ion trap with integrated light source Tony Hyun Kim Chuang group 2011 April 5.

Slides:



Advertisements
Similar presentations
Some New Data From FRC Experiment on Relaxation For discussions at Hall-Dynamo and Related Physics meeting CMSO June 10-11, 2004 at PPPL Guo et al, PRL.
Advertisements

1 T. Kataoka, S. E. Day, D. R. Selviah, A. Fernández Department of Electronic and Electrical Engineering University College London, U.K. Polarization-Insensitive.
Mostly by Gwyn Williams and the JLab Team, Presented by D. Douglas Working Group 4 Diagnostics & Synchronization Requirements Where we are and what needs.
Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M.
Quantum Computer Implementations
Optomechanical cantilever device for displacement sensing and variable attenuator 1 Peter A Cooper, Christopher Holmes Lewis G. Carpenter, Paolo L. Mennea,
Nanophotonic Devices for Quantum Optics Feb 13, 2013 GCOE symposium Takao Aoki Waseda University.
Quantum simulation with trapped ions at NIST
Sub-femtosecond bunch length diagnostic ATF Users Meeting April 26, 2012 Gerard Andonian, A. Murokh, J. Rosenzweig, P. Musumeci, E. Hemsing, D. Xiang,
Promising emulsion-detection technology for ultrafast time-resolved study of structural phase transitions one of the most exciting fields of condensed.
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Silicon-based Quantum Computation Cheuk Chi Lo Kinyip Phoa Dept. of EECS, UC Berkeley C191 Final Project Presentation Nov 30, 2005.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.

Single-ion Quantum Lock-in Amplifier
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
SURFACE PLASMON POLARITONS. SPPs Pioneering work of Ritchie (1957) Propagate along the surface of a conductor Trapped on the surface because of their.
Workshop TS May 2008 GENERAL CLIC ALIGNMENT Progresses and strategy. Hélène MAINAUD DURAND, TS/SU/MTI.
Transfer of entanglement from a Gaussian field to remote qubits Myungshik Kim Queen’s University, Belfast UniMilano 14 December 2004.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
NSF Workshop on Quantum Information Processing And Nanoscale Systems, 9/11/2007 Jungsang Kim Changsoon KimFelix Lu Bin LiuCaleb Knoernschild Kyle McKayChris.
Philipp Hauke, David Marcos, Marcello Dalmonte, Peter Zoller (IQOQI, Innsbruck) Brighton, Phys. Rev. X 3, (2013) Experimental input:
What Atomic Physics has to offer for Quantum Computing Tony Hyun Kim 6.UAT Proposal Talk Spring 2008.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Exploring The Quantum Department of Physics Entering the FreezerThe Age of the Qubit HOTCOLD Quantum properties emerge at extremes of energy. We work with.
MEMS for NEMS Solutions for the Fat Finger Problem Michael Kraft.
Point Paul trap: Fiber integration and height variation
Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.
Quantum state manipulation of trapped ions D. J. Wineland, NIST, Boulder, Colorado.
Determination of fundamental constants using laser cooled molecular ions.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Distributing entanglement in a multi-zone ion-trap * Division 891 T. Schätz D. Leibfried J. Chiaverini M. D. Barrett B. Blakestad J. Britton W. Itano J.
Experimental study of Efimov scenario in ultracold bosonic lithium
Ultra-small mode volume, high quality factor photonic crystal microcavities in InP-based lasers and Si membranes Kartik Srinivasan, Paul E. Barclay, Matthew.
Atom chips: A vision for neutral atom QIP E.A. Hinds Imperial College, 11 July 2006 Imperial College London.
Fiber-coupled Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms, Massachusetts.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
David Geelan Centre for Quantum Dynamics/ Institute for Glycomics
Seung Hyun Park Hyperfine Mapping of Donor Wave Function Deformations in Si:P based Quantum Devices Seung Hyun Park Advisors: Prof. Gerhard Klimeck Prof.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 16 (3/31/2014) Slide Introduction to Quantum Optics.
Fiber-integrated Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms,
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Ring Resonators & Optofluidic Applications
1 August 27, 2012 Tailoring Light-Matter Interaction in Nanophotonic Environments Petru Tighineanu Quantum Photonics group.
Light Microscope.
Nanophotonics Prof. Albert Polman Center for Nanophotonics
A10 Designing spin-spin interactions in cold ion crystals
Interferometer configurations for Gravitational Wave Detectors
Pitch and Catch of Non-Classical Microwaves
Etching Processes for Microsystems Fabrication
A10 Designing spin-spin interactions in cold ion crystals
SW Series The SW series are fast, non-latching MEMS switches available both for single mode and multimode fibers. They are available in configurations.
Optics Kathy Geise April 2007
Development of a 3-D Fibre Based Laser Light Force Optical Trap
Coupled atom-cavity system
Opening a Remote Quantum Gate
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Fiber-coupled Point Paul Trap
Broadband Lateral Tapered Structures for Improved Bandwidth and Loss Characteristics for All-Optical Wavelength Converters Xuejin Yan, Joe Summers, Wei.
Cavity Quantum Electrodynamics for Superconducting Electrical Circuits
Linear Optical Quantum Computing
Broadband Lateral Tapered Structures for Improved Bandwidth and Loss Characteristics for All-Optical Wavelength Converters Xuejin Yan, Joe Summers, Wei.
Tuning Interactions Between Quantum Dots and Cavities
Entangling Atoms with Optical Frequency Combs
Presentation transcript:

Surface-electrode ion trap with integrated light source Tony Hyun Kim Chuang group 2011 April 5

Optics integration in ion traps QIP with 10s and 100s of qubits Quantum light-matter interface (cQED) [1] D. Kielpinski, C. Monroe, D.J. Wineland. Nature 6890, (2002) [2] A. VanDevender, Y. Colombe, J. Amini, D. Leibfried, D.J. Wineland. PRL 105, (2010) [3] E. Streed, B.G. Norton, A. Jechow, T.J. Weinhold, D. Kielpinski. PRL 106, (2011) [4] P.F. Herskind, S.X. Wang, M. Shi, Y. Ge, M. Cetina, I.L. Chuang. arXiv: 1011:5259 (2010) [5] A. Wilson, et al. arXiv: (2011) [1][2] [4] [3] [5]

Optics integration in ion traps QIP with 10s and 100s of qubits Quantum light-matter interface (cQED) [1] D. Kielpinski, C. Monroe, D.J. Wineland. Nature 6890, (2002) [2] A. VanDevender, Y. Colombe, J. Amini, D. Leibfried, D.J. Wineland. PRL 105, (2010) [3] E. Streed, B.G. Norton, A. Jechow, T.J. Weinhold, D. Kielpinski. PRL 106, (2011) [4] P.F. Herskind, S.X. Wang, M. Shi, Y. Ge, M. Cetina, I.L. Chuang. arXiv: 1011:5259 (2010) [5] A. Wilson, et al. arXiv: (2011) [1][2] [4] [3] [5] Challenges: 1. Perturbation of trapping fields, 2. Dielectric charging [6], 3. Overlap of ion and mode. [6] M. Harlander, M. Brownnutt, W. Hansel, R. Blatt. NJP 12, (2010)

Fiber integration for light delivery 674nm SM fiber ~50 micron waist RF GND Single-mode for 674nm (and 422nm) Mode waist at ion of ~50 micron

Trap design and fabrication Ion translation by multiple RF sources [7] Coarse alignment under microscope RF1 RF2 [7] T.H. Kim, P.F. Herskind, T. Kim, J. Kim, I.L. Chuang. PRA 82, (2010)

Trap design and fabrication Ion translation by multiple RF sources [7] Coarse alignment under microscope RF1 RF2 [7] T.H. Kim, P.F. Herskind, T. Kim, J. Kim, I.L. Chuang. PRA 82, (2010)

Cryogenic experiment Fiber Sr oven 2x RF 4x RF 40K 8K „Conventional“ beam delivery

Results 1.Stable trapping and ion-fiber interaction 2.Fiber-induced charging dynamics 3.Measured fiber mode using ion as a probe (1) T.H. Kim, P.F. Herskind, I.L. Chuang. arXiv: (2011) (3) (2) ~5s discharge rate ~100mV

Summary 1.Demonstration of integrated (SM) fiber-trap: – No dramatic charge buildup during trap operation 2.Quantified fiber-induced stray fields: – Large (10~100mV) but slow (seconds) 3.Micromotion-free RF translation of ion: – Significant range; tuned to mode ~150um away – General technique for tuning ion-mode overlap, use of ion as sensor T.H. Kim, P.F. Herskind, I.L. Chuang. arXiv: (2011)