ELECTROCHEMISTRY INTRO1 !? THINGS THAT WE ARE FAMILIAR WITH : !? Ohm’s law ( and Kirchoff’s…) (ABC... electrical circuits) U = I  R, R =   L / S Faraday’s.

Slides:



Advertisements
Similar presentations
Fig. 22-1a (p.629) A galvanic electrochemical cell at open circuit
Advertisements

Experiment #10 Electrochemical Cell.
Electrochemistry.
Modeling in Electrochemical Engineering
Electrode kinetics and mass transport Plan 1.Electrode reaction as a series of multiple consecutive steps 2. Mass transport phenomena: - diffusion - convection.
Biopotential electrodes A complex interface Basics of Instrumentation, Measurement and Analysis 2011, 2012.
Introduction to Electroanalytical Chemistry
Introduction to electrochemical techniques
Introduction to electrochemistry - Basics of all techniques -
ELECTROCHEMISTRY. During electrolysis positive ions (cations) move to negatively charged electrode (catode) and negative ions (anions) to positively charged.
Electrochemical Cells. Definitions Voltaic cell (battery): An electrochemical cell or group of cells in which a product-favored redox reaction is used.
Oxidation and reduction reactions occur in many chemical systems. Examples include the rusting of iron, the action of bleach on stains, and the reactions.
Electroanalytical Chemistry
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Chapter 19 Electrochemistry
Chapter 14 Electrochemistry. Basic Concepts Chemical Reaction that involves the transfer of electrons. A Redox reaction. Loss of electrons – oxidation.
Chapter 17 Electrochemistry 1. Voltaic Cells In spontaneous reduction-oxidation reactions, electrons are transferred and energy is released. The energy.
Electrochemistry Chapter 4.4 and Chapter 20. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
Electrochemistry AP Chapter 20. Electrochemistry Electrochemistry relates electricity and chemical reactions. It involves oxidation-reduction reactions.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Redox Reactions and Electrochemistry
Electrochemistry. Electrochemical Cells  Electrons are transferred between the particles being oxidized and reduced  Two types –Spontaneous = Voltaic.
Coulometric Methods A.) Introduction:
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Activity Series lithiumpotassiummagnesiumaluminumzincironnickelleadHYDROGENcoppersilverplatinumgold Oxidizes easily Reduces easily Less active More active.
Electrical and Chemical Energy Interconversion
Chapter 20 Electrochemistry and Oxidation-Reduction.
Electrochemistry - The relationship between chemical processes and electricity oxidation – something loses electrons reduction – something gains electrons.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Unit 5: Everything You Wanted to Know About Electrochemical Cells, But Were Too Afraid to Ask By : Michael “Chuy el Chulo” Bilow And “H”Elliot Pinkus.
CHM Lecture 23 Chapt 14 Chapter 14 – Fundamentals of Electrochemistry Homework - Due Friday, April 1 Problems: 14-4, 14-5, 14-8, 14-12, 14-15, 14-17,
Electrochemistry Electrochemical Cells –Galvanic cells –Voltaic cells –Nernst Equation –Free Energy.
Chapter 20 Electrochemistry. © 2009, Prentice-Hall, Inc. Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry for Engineers
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Introduction to Electrochemistry A.) Introduction : 1.) Electroanalytical Chemistry: group of analytical methods based upon electrical properties of analytes.
CHE1102, Chapter 19 Learn, 1 Chapter 19 Electrochemistry Lecture Presentation.
ELECTROCHEMICAL CELLS. ELECTROCHEMISTRY The reason Redox reactions are so important is because they involve an exchange of electrons If we can find a.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
ELECTROCHEMISTRY Electrochemistry relates electricity and chemical reactions. It involves oxidation-reduction reactions (aka – redox) They are identified.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Consider the reduction half reaction: M z+ + ze → M The Nernst equation is E = E ө + (RT/zF) ln(a) When using a large excess of support electrolyte, the.
Electrochemistry -1 Puneet Jyoti G.C.G-42 Chd.. Electron Transfer Reactions  Results in the generation of an electric current (electricity) or be caused.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Electrochemistry - The relationship between chemical processes and electricity oxidation – something loses electrons reduction – something gains electrons.
Electrochemical Methods: Intro Electrochemistry Basics Electrochemical Cells The Nernst Equation Activity Reference Electrodes (S.H.E) Standard Potentials.
Introduction to Electroanalytical Chemistry
Electrochemistry.
Electrochemistry Chapter 19
Analytical Chemistry II Spring 2017
Dr. Aisha Moubaraki CHEM 202
Oxidation-Reduction reactions
Electrochemistry Chapter 19
Fundamentals of Electrochemistry
Advanced Higher Chemistry Unit 2(e)
10.2 Electrochemistry Objectives S2
Electrochemistry i.e. This is the End!.
Electrochemistry Chapter 19
Electrode kinetics and mass transport
Electrochemistry AP Chapter 20.
A Deeper Insight into the Meaning of k° and α.
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Presentation transcript:

ELECTROCHEMISTRY INTRO1 !? THINGS THAT WE ARE FAMILIAR WITH : !? Ohm’s law ( and Kirchoff’s…) (ABC... electrical circuits) U = I  R, R =   L / S Faraday’s law (ABC... electrolysis) m = k  Q, k = M / n  F ( F = ?) Fick’s laws (ABC... diffusion) J =  D  dC/dx  C/  t = D   2 C/  x 2 Electrical properties of condensed phases – conducting electrical current (metals, semiconductors) Ionic compounds, properties of solutions, ionic conductivity Redox reactions ( np. 2Cr H 2 O OH - = 2 CrO H 2 O ) Phase boundary electrolyte - electrode

ELECTROCHEMISTRY INTRO2 Me Me+ electrodeelectrolyte Charge transfer transport Oxidation – reduction reaction rate Diffusion transport rate

ELECTROCHEMISTRY INTRO3 Each stage can determine the overall reaction rate 1. „obligatory” stages charge transfer Transport (diffusion, convection, migration ) 2. other possible stages Chemical reaction before or after (c t) Crystallisation of new phases Adsorption at the electrode

ELECTROCHEMISTRY INTRO4 Reaction rate v = ∆ c A / ∆t, ( or v = k A-B · c A ) ( c A - volumetric concentration – we must do something about it) In electrode kinetics the transferred charge is a measure of reaction rate Following Faraday’s law: m A = k F · I · ∆t = k · Q (here k – electrochem equivalent, not reaction rate constant) And back to general reaction rate formula m A = c A · V or c A surface · S = k F · I · ∆t v = k · I · / S v ( mol · s -1 m) = k F ( mol/C ) · j, j – current density (A/m 2 ) =

ELECTROCHEMISTRY INTRO 5 CURRENT DENSITY = MEASURE OF ELECTRODE PROCESS RATE And what makes the reaction happen at all?? Equilibrium – no products ( is anything happening?) Deviation from equilibrium - energy impuls needed Reaction – transformation to new equilibrium state What might be an energy impuls?

ELECTROCHEMISTRY INTRO6  energy state of a particle – chemical potential μ i = μ o + RT ( a i )  Charged particle - electrochemical potential, possible responce to electrical field φ= φ o + RT/nF ln ( a i(n+) )  Equilibrium - equal potentials of a particle in two phases (electrode – electrolyte) E = E 0 + RT/nF ln ( a electrode / a electrolyte ) ENERGY IMPULS Change in concentration, temperature Overpotential applied to the electrode

ELECTROCHEMISTRY INTRO7 At equilibrium Redox transitions on molecular scale Identical overall charge for oxidation and reduction j k = j a, overall current density j k - j a = 0 At overpotential ∆E j = j k - j a ≠ 0 as measure for reaction rate, so j/nF = v = k rr × C

ELECTROCHEMISTRY INTRO8 Reaction rate constant - overpotential: k rr = k s exp[ α n F ΔE / RT] (one equilibrium – two constants: anodic and cathodic) Combining v =.. And k = …. (To get current-overpotential dependence) i = nF S k s [ c utl exp(-αn F ΔE / RT ) – c red (βn F ΔE / RT)] where k s - standard reaction rate constant α i β coefficients for energy barrier symmetry ΔE overpotential

ELECTROCHEMISTRY INTRO9 Electrode process – heterogenous, charge transfer at phase boundary + transport Electrode = element of electrical circuit Measurement = two electrodes form a cell Circuit – measurable : voltage and current Difference in V/I response for a.c and d.c.

ELECTROCHEMISTRY INTRO10 Transport properties Structure of electrolytes, dissociation Movement of ionic species Mobility, velocity of part i v i = E · u i Conductivity  = e · N i · z i · u i Transference number

ELECTROCHEMISTRY INTRO11 Cell voltage or electrode potential Equilibrium at the electrode – Nernst pot. Overpotential – driving force for the reaction Current – electrical measure of reaction rate Voltage – measure of potential difference ! For kinetics – we must know the potential of a single electrode!

ELECTROCHEMISTRY INTRO 12 3 –electrode cell 3-electrode cells : WE and CE - „working circuit” reactions at electrodes, current flow WE- RE - measuring circuit, high input impedance on RE no current flow Reference electrodes : very precise potential, examples : Hg/ Hg 2 Cl 2, Ag/ AgCl, Quasi-reference : W, Ta, other non-reactive metals idea : stable potential, easy assembly, Function current-potential – diffusion and kinetics in the cell must be described electroanalysis

ELECTROCHEMISTRY INTRO13 CE Cell RE Potentiostat EzEz E I Electrolytic cell and potentiostat Electrodes: Meas. Parameters: CE - counter E - WE potential RE - reference E z - applied potential WE - workingI - current in CE-WE circuit WE

ELECTROCHEMISTRY INTRO14 EIS Electrotechnical aspect : a.c.circuit Electrochemical aspect : approximation of electrode process with circuit elements Charge transfer Conductivity Resistance of layer Resistances R Z = R

ELECTROCHEMISTRY INTRO15 Double layer capacity Capacity of layers Capacities C Z = -j/  C Diffusion phenomena Roughness of surface Inhomogenity of layer Constant phase element Admittance Y = Yo (j  ) n for n=0 resistance For n=1 capacity Corrosion processes (many reactions and equilibria) Inductance L Z = j  L

ELECTROCHEMISTRY INTRO16 Equivalent circuits Electrical model of electrode Connections in series and parallel – interpretation of consecutive or simultaneous reactions / phenomena Physical sense vs. numerical possibilities

ELECTROCHEMISTRY INTRO17 Our lab sessions EIS – dr Regina Borkowska ( 5h basic electrode kinetics) Voltammetry – dr Regina Borkowska 5h Conducting polymers dr M. Siekierski 5h Batteries – dr Marek Marcinek (5h basic cells + 5h Li- cells) Transference numbers – Msc Michał Piszcz(5h diffusion coefficient + 5h transference numbers in Li systems) Ion associations – Dr Leszek Niedzicki (5h Fuoss-Kraus formalism – electrochemical approach) Corrosion dr Andrzej Królikowski 5h Instructions and auxillary materials: download from